Законы классической физики описывают. Понятия, законы и принципы классической физики. Ценность подобных знаний


Принцип дополнительности легко представить себе как закон платы, о чем у нас уже шла речь выше (разд.1-2): рост одной из двух или нескольких взаимосвязанных величин должен быть оплачен уменьшением другой величины (других величин).

Актуальность закона чрезвычайно велика в сфере человеческих взаимоотношений, но корни его, по-видимому, заложены глубже, в самом основании нашего мира. Простые, известные со времен античности принципы рычага, клина, полиспаста позволяют теоретически бесконечно увеличивать силу человеческих рук, силу удара, усилие на шкиве мотора. Предложение «перевернуть земной шар», если найдется подходящая точка опоры, не было хвастовством или безумной фантазией Архимеда. Единственное, что забыл подсчитать великий изобретатель - с какой (космической) скоростью он должен бежать, надавливая на плечо рычага, и сколько миллионов лет он должен затратить на это занятие, чтобы сдвинуть Землю на минимально заметную величину. Вероятно, только действие закона платы позволило биосфере в течение миллиардов лет сохранять важнейшие параметры в допустимых границах. В противном случае какая-нибудь амеба могла бы представить себя Архимедом и сделать с Землей что-то непоправимое. Каждой вылазке разрушающего Ян немедленно, без всякой задержки, оказывает противодействие - в том или ином виде - сохраняющее Инь. Время и пространство (расстояние) - обычная валюта в этой торговле.
Согласно закону всемирного тяготения сила притяжения F двух масс mi и т2, оплачивается второй степенью расстояния R между их центрами тяжести: F = ym^/R2, где у - гравитационная постоянная. Зависимость дополнительного типа становится более очевидной, если переписать уравнение в виде: FR2 = у тгт2. Если величины взаимодействующих масс не меняются, то увеличение силы притяжения должно оплачиваться уменьшением расстояния, а увеличение расстояния - уменьшением силы. Вторая дополнительная пара составлена из двух взаимодействующих масс. Если мы задались целью оставить неизменными силу и расстояние, то изменение массы будет оплачено противоположным изменением второй массы. Аналогична взаимная «ответственность» величин, если речь идет о кулоновском взаимодействии электрических зарядов: FR2 = Kqtq2, где к - коэффициент пропорциональности.
В недрах Солнца и подобных ему звезд произведение давления на квадрат расстояния от центра - величина постоянная: PR2 = N, что опять приводит к зависимости дополнительного типа.
Расстояние, тоже в квадрате, до источника света противостоит как дополнительная переменная величине освещенности Е плоской поверхности: ER2 = 1 cosa, где 1 - сила света, a - угол между нормалью к поверхности и направлением распространения волны.
Вторая степень показателя удаленности - естественное следствие геометрии евклидова пространства. Рассеяние энергии в пространстве снижает напряженность энергетического поля, но в то же время покрывает большую поверхность. Поверхность растет как площадь сегмента поверхности шара, то есть пропорционально второй степени расстояния.
Еще примеры дополнительности физических величин.
Если задаться постоянством расстояния между пунктами А и В, то основное уравнение движения: S = vt ставит в положение обратно зависимых величин скорость у и время t.
Масса обратна ускорению, когда к разным телам прикладывается одна и та же сила: F == та.
Формула кинетической энергии Е демонстрирует дополнительные отношения между движущейся массой m и скоростью v: 2Е = mv2. Пара явно неравноправна, скорость входит в нее с показателем степени 2, что, впрочем, не нарушает сам принцип обратной зависимости. Но для конструктора артиллерийских орудий это не безразлично. Ясно, что наращивать бронебойную силу снаряда выгоднее путем увеличения Анальной скорости, чем за счет утяжеления снаряда.
Тройка переменных: сила тока I, сопротивление R и напряжение в Цепи V (закон Ома) при постоянном напряжении обнаруживает отношение дополнительности между первой и второй величинами: V = IR.
Уравнение состояния идеального газа (уравнение Клапейрона - Менделеева) связывает между собой, как и в случае с гравитацией, сразу две дополнительных пары: pV = m/p RT. Здесь р - давление газа, V - объем, m/р - количество газа, выраженное в молярных единицах, Т - температура, R - газовая постоянная. При адиабатическом процессе масса газа предполагается постоянной и теплообмена со средой не происходит, но все три свободные переменные, объем, давление и температура меняются. Нагретый летним солнцем воздух поднимается, теряя температуру и давление, но объем его при этом растет. В опытах можно поддерживать температуру постоянной (изотермический процесс), тогда по закону Бойля-Мариотта объем и давление становятся дополнительными величинами. Мы можем также задать условие неизменности объема и давления, тогда в обратных отношениях окажутся количество и температура газа. Эта зависимость, однако, не вызвала большого интереса у физиков и не получила собственного названия.
Мы уже упоминали, что «неживая» природа дает примеры не только парной, но и множественной дополнительности, речь шла о потенциалной энергии. Вот аналогичный случай. Когда электрический заряд движется в магнитном поле, его траектория отклоняется силой Лоренца F в плоскости, перпендикулярной движению заряда и индукции магнитного поля, следуя правилу: F = qvB. Переменные в правой части уравнения последовательно обозначают заряд, скорость и магнитную индукцию, три взаимно-допонительных величины.
Можно и дальше умножать примеры отношений дополнительности, проявляющих себя в механике твердых тел, жидкостей и газов, в термодинамике, электродинамике, оптике и других разделах физики. Похоже, для принципа дополнительности нет границ в «неживом» мире.
Все это было бы прекрасно, если бы мы заранее не объявили, что в дополнительных отношениях находятся величины, одна из которых в чем- то мужская, другая в чем-то женская. Для третьей уже места как-будто не находится. Конечно, для писателей-фантастов не составляет труда придумать семью с тремя, пятью родителями: папа, дада, нана,... мама. Между папой и мамой помещается целый ряд промежуточных существ с промежуточными свойствами. Оказывается, фантасты не открывают здесь ничего необычного. Реальные предметы, системы, способны выстраиваться в «очередь» по степени проявления в них свойств подвижности и консервативности.
Общее правило состоит в том, что при большинстве взаимодействий можно обнаружить активное, действующее начало, с наибольшим основанием претендующее на место мужского Ян и пассивное, инертное или даже противодействующее в духе женского Инь. Там, где во взаимодействии участвуют параметры силы, скорости, ускорения, электрического заряда, силы тока, температуры, давления, они ведут свое происхождение от причины всякого движения - энергии, осуществляют функцию действия. Противостоящие им переменные - расстояние, масса, электрическое сопротивление, объем - сами причиной движения не являются, наоборот, они отражают процессы торможения и рассеяния энергии в пространстве и во времени. Осуществляют функцию антидействия.
Сложнее обстоит дело, когда приходится расшифровывать примеры множественной дополнительности, как в примере с магнитной индукцией. Переменные образуют треугольник: заряд - скорость заряда - величина индукции. Наиболее энергетическим «углом» следует считать величину заряда, определяющую напряжение электрического поля. Магнитная индукция - пассивное начало, проявляющее себя не раньше, чем в магнитном поле появится движущееся электрическое поле. Это инертный «угол» троицы. Параметр скорости вместе с зарядом противостоит индукции как энергетический фактор. Но в паре с количеством переносимого электричества скорость, комплексная величина, составленная из расстояния и времени, несомненно, приобретает черты инертного начала. Из чего непосредственно следует важный вывод: Ян и Инь - не являются свойствами, раз и навсегда «записанными» за физическими переменными. Их позиции определяются только в паре, в сравнении. В одном сочетании свойство может выполнять функцию пассивного начала, в другом - активного.
Запомним: в отношения дополнительности могут вступать не только крайние члены ряда от чистого, стопроцентного Ян к чистому Инь, но и промежуточные обладатели обоих свойств. При этом их может быть больше двух под крышей одной и той же константы.
В таком случае как решить проблему разделения переменных, если это две качественно тождественные величины, как масса одна и масса Другая, заряд первый и заряд второй?
Когда взаимодействуют массы, не равные но величине, то появляется база для рассуждений. Оба тела испытывают действие сил, Равных по величине и противоположных по направлению. Но ускорение физического тела зависит не только от силы (прямо пропорционально), но и от массы тела (обратно пропорционально). Поэтому массивное тело и Маленькая песчинка отреагируют на притяжение по-разному: смещение большой массы может остаться незаметным, тогда как малая масса
просто «упадет» на своего партнера. Мы привыкли рассматривать Луну как спутник Земли, не наоборот. Тем более это относится к Земле и орбитальной станции, хотя теоретически оба тела обращаются вокруг общего центра тяжести. Напрашивается решение: присвоить марку Инь более крупному, более инертному телу. Также и в том случае, если действующая сила имеет электрическую или магнитную природу. Электрон, как более легкий и более подвижный компонент атома, определенно может претендовать на позицию мужского Ян рядом с протоном - Инь, хотя положительный и отрицательный электрический заряды в «чистом виде» равны по своей «активности». Аналогично, по соотношению масс, делятся функции частиц при взаимном отталкивании (электрон - катион).
Но если взаимодействуют два электрона, то, по определению, их массы равны между собой, так что и по признаку «массивности» их разделить нельзя. Здесь мы вынуждены сделать еще один существенный вывод: противопоставление инертного начала Инь и активного начала Ян имеет количественную природу. При полной качественной и количественной идентичности взаимодействующих переменных они становятся взаимозаменяемыми, продолжая выполнять функции двух чашек весов. В философском плане это может соответствовать достижению состояния полного равновесия, Ба Гуа в канонах китайской мудрости, или Саттве - в Индии.

Первый закон фотоэффекта можно объяснить с помощью классической физики, но второй и третий законы не находят в ней объяснения.

Дело в том, что согласно классической электродинамике энергия световой волны зависит только от ее амплитуды и не зависит от частоты. Поэтому невозможно объяснить установленный на опыте второй закон фотоэффекта, согласно которому максимальная кинетическая энергия вырванных электронов линейно возрастает при увеличении частоты падающего света. По той же причине не находит объяснения и третий закон фотоэффекта.

Отметим еще одну особенность фотоэффекта, также необъяснимую в рамках классической электродинамики, - это «безынерционность» фотоэффекта.

Опыт показывает, что фототок возникает сразу же при попадании света на электрод 1. Согласно же классической электродинамике для того, чтобы световая волна «раскачала» электрон, сообщив ему энергию, достаточную, чтобы он смог вырваться из металла, должно обязательно пройти некоторое время.

Квантовая физика. 2014

  • Законы фотоэффекта
    Учебник по Физике для 11 класса -> Квантовая физика
  • Вопросы и задания к параграфу § 25. Фотоэффект
    Учебник по Физике для 11 класса -> Квантовая физика
  • 1. Законы фотоэффекта
    Учебник по Физике для 11 класса -> Квантовая физика
  • Экспериментальное исследование фотоэффекта
    Учебник по Физике для 11 класса -> Квантовая физика
  • Вопросы и задания к параграфу § 19. Природа света. Законы геометрической оптики
    Учебник по Физике для 11 класса -> Электродинамика

  • Иллюстрации по физике для 10 класса -> Механические колебания и волны
  • Почему поезд трогается с места плавно?
    Иллюстрации по физике для 10 класса ->
  • Почему при ударе возникают большие силы?
    Иллюстрации по физике для 10 класса -> Законы сохранения в механике

  • Иллюстрации по физике для 10 класса -> Динамика
  • Почему движение молекул никогда не прекращается?
    Учебник по Физике для 10 класса -> Молекулярная физика и термодинамика
  • Почему скрипки и гитары имеют продолговатую форму?
    Учебник по Физике для 10 класса -> Механика
  • Глава 3. Законы сохранения в механике
    Учебник по Физике для 10 класса -> Механика
  • Почему мы не ощущаем движения Земли?
    Учебник по Физике для 10 класса -> Механика
  • Принцип соответствия
    Учебник по Физике для 10 класса ->
  • Границы применимости физических законов и теорий
    Учебник по Физике для 10 класса -> Физика и научный метод познания
  • Научный закон и научная теория
    Учебник по Физике для 10 класса -> Физика и научный метод познания
  • Принцип соответствия Бора
    Учебник по Физике для 11 класса -> Квантовая физика
  • 3. Соответствие между классической и квантовой механикой
    Учебник по Физике для 11 класса -> Квантовая физика
  • Вероятность в классической физике
    Учебник по Физике для 11 класса -> Квантовая физика
  • 3. Постулаты Бора
    Учебник по Физике для 11 класса -> Квантовая физика
  • 3. Применение фотоэффекта
    Учебник по Физике для 11 класса -> Квантовая физика
  • 2. Теория фотоэффекта
    Учебник по Физике для 11 класса -> Квантовая физика
  • Поставим опыт к теме 1. Законы фотоэффекта
    Учебник по Физике для 11 класса -> Квантовая физика
  • 3. Гипотеза Планка
    Учебник по Физике для 11 класса -> Квантовая физика
  • 2. «Ультрафиолетовая катастрофа»
    Учебник по Физике для 11 класса -> Квантовая физика

  • Учебник по Физике для 11 класса -> Электродинамика
  • Законы преломления света
    Учебник по Физике для 11 класса -> Электродинамика
  • Законы отражения света
    Учебник по Физике для 11 класса -> Электродинамика
  • Почему между проводниками с током есть только магнитное взаимодействие?
    Учебник по Физике для 11 класса -> Электродинамика
  • Глава 2. Законы постоянного тока
    Учебник по Физике для 11 класса -> Электродинамика
  • Почему электрическое поле действует на незаряженные предметы?
    Учебник по Физике для 11 класса -> Электродинамика
  • Установка для исследования фотоэффекта
    Иллюстрации по физике для 11 класса -> Квантовая физика
  • Демонстрация фотоэффекта
    Иллюстрации по физике для 11 класса -> Квантовая физика
  • Почему небо голубое, а Солнце - желтоватое?
    Иллюстрации по физике для 11 класса -> Электродинамика
  • Почему мыльные пузыри кажутся разноцветными?
    Иллюстрации по физике для 11 класса -> Электродинамика
  • Как волновая теория объясняет законы отражения и преломления света?
    Иллюстрации по физике для 11 класса -> Электродинамика
  • Законы преломления света
    Иллюстрации по физике для 11 класса -> Электродинамика
  • Законы отражения света
    Иллюстрации по физике для 11 класса -> Электродинамика
  • Природа света. Законы геометрической оптики
    Иллюстрации по физике для 11 класса -> Электродинамика
  • Применение фотоэффекта
    Интересное о физике -> Энциклопедия по физике
  • Уравнение Эйнштейна для фотоэффекта
    Интересное о физике -> Энциклопедия по физике
  • Теория фотоэффекта
    Интересное о физике -> Энциклопедия по физике
  • Законы фотоэффекта
    Интересное о физике -> Энциклопедия по физике
  • Законы преломления
    Интересное о физике -> Энциклопедия по физике
  • Законы отражения
    Интересное о физике -> Энциклопедия по физике
  • НЬЮТОН ИСААК
    Интересное о физике -> Рассказы об ученых по физике
  • Отдача пушки
    Иллюстрации по физике для 10 класса -> Законы сохранения в механике
  • Груз и тележка
    Иллюстрации по физике для 10 класса -> Законы сохранения в механике
  • Перетягивание каната
    Иллюстрации по физике для 10 класса -> Законы сохранения в механике
  • Столкновение одинаковых шаров
    Иллюстрации по физике для 10 класса -> Законы сохранения в механике

Классическая физика понимается как фундаментальная база исследования макрообъектов. Для иллюстрации этого положения рассмотрим следующий пример. Как движется автомобиль? Поступательное движение поршней в цилиндрах преобразуется во вращательное движение колес. Колеса отталкиваются от поверхности дороги, и в результате автомобиль перемещается в пространстве по отношению к окружающим предметам. Все эти процессы изучает «Механика». Началом «цепочки» механических движений является движение поршня, который толкает газообразная смесь в камере сгорания. Процессы в газах изучает «Молекулярная физика». Часть энергии рабочей смеси преобразуется в энергию поршня, а часть «выбрасывается» в виде теплоты вместе с отработанными газами, расходуется на последующее сжатие рабочей смеси и т.д. Эти энергетические процессы, от которых зависят КПД и мощность двигателя, изучает «Термодинамика». Электромагнитные процессы в системе зажигания изучает «Электродинамика». Поскольку эти процессы формируются с помощью транзисторов микросхем и других устройств, которые основаны на квантовых явлениях, то они изучаются «Квантовой физикой».

Таким образом, движение автомобиля представляет собой сумму самых разных явлений. Различные специальные дисциплины изучают отдельные явления, агрегаты и узлы автомобиля. Это связано с их сложностью и привело к дифференциации науки. Однако самое первое описание движения автомобиля связано с основными законами классической физики.

Самый простой вид движения материи в макромире – это перемещение тел по отношению к другим телам. Для его описания используются основные понятия кинематики: движение, скорость, ускорение, относительность движения, система отсчета, материальная точка, траектория и т.п. и основные законы, объясняющие механическое движение, - законы Ньютона:

Всякое тело сохраняет состояние покоя или равномерного прямолинейного движения, пока оно не понуждается приложенными силами изменить это состояние. (Закон инерции).

Изменение количества движения пропорционально приложенной действующей силе и происходит по направлению той прямой, по которой эта сила действует (второй закон – главный закон динамики).

Действие всегда есть равное и противоположно направленное противодействие, т.е. взаимодействия двух тел друг на друга между собой равны и направлены в противоположные стороны (третий закон).

Согласно законам механики – основной причиной движения является действие сил. Поэтому анализу понятия силы в классической физике уделяется большое внимание. Силы делятся на: силу упругости (она связана с деформацией тел) и силу трения. Природа этих сил связана с электрическим взаимодействием между атомами; силу тяготения (ее называют силой тяжести, под ее действием свободные тела падают на Землю). Сила тяготения часто проявляется в виде веса – силы, с которой тело действует на опору; силу инерции.

Существуют разные формы движения материи (механическая, тепловая, электрическая и т.д.), которые могут переходить друг в друга. Поэтому физика использует важнейшее понятие, выражающее меру перехода одних форм движения в другие, - это энергия. Важнейшие законы классической физики – законы сохранения:

Закон сохранения энергии: энергия не уничтожается и не создается, а может лишь переходить из одной формы в другую.

Закон сохранения импульса: если сумма внешних сил равна нулю, импульс системы тел остается постоянным при любых происходящих в ней процессах.

В современной физике эти важнейшие законы сохраняют свое фундаментальное значение, они выполняются всегда и везде, не только в макромире, но и в космосе и в микромире.

Несмотря на то, что классическая термодинамика была составной частью классической физики, однонаправленность тепловых процессов принципиально отличала их от механических. Любое механическое движение обратимо, т.е. может происходить как в прямом, так и в обратном направлении через те же промежуточные состояния: вращение маховика, качание маятника и т.п. При этом в уравнениях движения меняется лишь знак времени: вместо

t следует использовать –t. Это означает, что механическое движение симметрично по отношению к изменению знака времени. Тепловые процессы в этом смысле существенно отличаются: они необратимы, не симметричны по отношению к изменению знака времени. Время всегда течет в одну сторону, так называемая «стрела времени».

Все реальные процессы протекают с увеличением энтропии, т.е. ведут к установлению теплового равновесия. Из этого следует, что всякая упорядоченность в окружающем мире постепенно исчезает, плотности частиц и температуры выравниваются, энергия рассеивается, со временем прекращается вообще всякое направленное движение, всякая жизнь, останется только молекулярный хаос. Долгое время умы не только физиков, но и философов занимала идея тепловой смерти Вселенной.

Сосуществовавшие концепции описания природы – корпускулярная и континуальная – взаимоисключали друг друга, так как считалось, что они относятся к разным сферам реальности. Поэтому обнаружение двойственной природы у одних и тех же объектов означало для классической физики потрясение всех ее основ и получило название «кризиса физики».

Основные понятия темы:

Корпускулярная концепция природы описывает все явления и процессы природы как движение частиц.

Континуальная концепция природы описывает все явления и процессы как

Вещество – вид материи, обладающий корпускулярными свойствами.

Поле – вид материи, который представляет собой взаимодействие частиц и описывается длиной волны, фазой и амплитудой.

Динамические закономерности отображают объективную закономерность в форме однозначной связи физических величин, выражаемых количественно.

Статистические закономерности отображают объективную закономерность в форме результата взаимодействия большого числа элементов и поэтому характеризуют их поведение в целом.

Закрытые (замкнутые) системы – системы, которые не обмениваются со своим окружением ни массой, ни энергией.

Энтропия – мера беспорядка в системе.

I-е начало термодинамики – закон сохранения энергии.

II-е начало термодинамики – энтропия замкнутой системы постоянно возрастает.

«Тепловая смерть Вселенной» - направленность всех процессов во Вселенной к точке термодинамического равновесия.



Определение 1

Механика - обширный раздел физики, исследующий законы изменения положений физических тел в пространстве и времени, а также постулаты, основанные на законах Ньютона.

Рисунок 1. Основной закон динамики. Автор24 - интернет-биржа студенческих работ

Зачастую данное научное направление физики называют «Ньютоновской механикой». Классическая механика на сегодняшний день подразделяется на такие разделы:

  • статику - рассматривает и описывает равновесие тел;
  • кинематику - изучает геометрические особенности движения без рассмотрения его причин;
  • динамику – занимается исследованием движения материальных веществ.

Механическое движение представляет собой одну из простейших и вместе с тем наиболее распространенную форму существования живой материи. Поэтому классическая механика занимает исключительно значимое место в естествознании и считается главным подразделом физики.

Основные законы классической механики

Классическая механика в своих постулатах изучает движение рабочих тел, со скоростями, которые намного меньше скорости света. Согласно специальной гипотезе относительности, для движущихся на огромной скорости элементов не существует абсолютного пространства и времени. В результате характер взаимодействия веществ становится сложнее, в частности, их масса начинает зависеть от скорости движения. Все это стало объектом рассмотрения формул релятивистской механики, для которых константа световой скорости играет фундаментальную роль.

Классическая механика базируется на следующих основных законах.

  1. Принцип относительности Галилея. Согласно данному принципу существует множество систем отсчёта, в которых любое свободное тело находится в состоянии покоя или движется с постоянной по направлению скоростью. Эти концепции в науке называются инерциальными, и осуществляю движение относительно друга прямолинейно и равномерно.
  2. Три закона Ньютона. Первый устанавливает обязательное наличие свойства инертности у физических тел и постулирует наличие таких концепций отсчёта, в которых движение свободного вещества происходит с постоянной скоростью. Второй постулат вводит понятие силы как главной меры взаимодействия активных элементов и на основе теоретических фактов постулирует взаимосвязь между ускорением тела, его величиной и инертностью. Третий ньютоновский закон - для каждой действующей на первое тело силы существует противодействующий фактор, равный по величине и противоположный по направлению.
  3. Закон сохранения внутренней энергии является следствием законов Ньютона для стабильных, замкнутых систем, в которых действуют исключительно консервативные силы. Полная механическая сила замкнутой системы материальных тел, между которыми действуют только тепловая энергия, остается постоянной.

Правила параллелограмма в механике

Из трех фундаментальных теорий движения тела Ньютона вытекают определенные следствия, одно из которых - сложение общего количества элементов по правилу параллелограмма. Согласно данной идее, ускорение любого физического вещества зависит от величин, в основном характеризующих действие иных тел, определяющих особенности самого процесса. Механическое действие на исследуемый объект со стороны внешней среды, которая кардинально изменяет скорость движения сразу нескольких элементов, называют силой. Она может иметь многогранную природу.

В классической механике, которая имеет дело со скоростями, значительно меньшими скорости света, масса считается одной из основных характеристик самого тела, не зависящей от того, движется оно или находится в состоянии покоя. Масса физического тела находится вне зависимости от взаимодействия вещества с другими частями системы.

Замечание 1

Таким образом, масса стала постепенно пониматься как количество живой материи.

Установление понятий массы и силы, а также метода их измерения позволило Ньютону описать и сформулировать второй закон классической механики . Итак, масса есть одна из ключевых характеристик материи, определяющая ее гравитационные и инертные свойства.

Первое и второе начало механики относятся соответственно к систематическому движению одного тела или материальной точки. При этом учитывается только действие других элементов в определенной концепции. Однако любое физическое действие есть взаимодействие.

Третий закон механики уже фиксирует данное утверждение и гласит: действию всегда соответствует противоположно направленное и равное противодействие. В формулировке Ньютона этот постулат механики справедлив лишь для случая непосредственной взаимосвязи сил или при внезапной передаче действия одного материального тела на другое. В случае перемещения за длительный промежуток времени третий закон применяется тогда, когда временем передачи действия возможно пренебречь.

Вообще все законы классической механики справедливы для функционирования инерциальных систем отсчета. В случае неинерциальных концепций ситуация совершенно иная. При ускоренном движении координат относительно самой инерциальной системы первый закон Ньютона невозможно использовать - свободные тела в ней будут менять свою скорость движения с течением времени и зависеть от скорости движения и энергии других веществ.

Границы применимости законов классической механики

Рисунок 3. Границы применимости законов классической механики. Автор24 - интернет-биржа студенческих работ

В результате достаточно стремительного развития физики в начале XX столетия сформировалась определенная сфера применения классической механики: ее законы и постулаты выполняются для движений физических тел, скорость которых значительно меньше скорости света. Было определено, что с ростом скорости масса любого вещества будет автоматически возрастать.

Несоответствие принципов в классической механике в основном исходило из того, что будущее в известном смысле полностью находится в настоящем – этим и определяется вероятность точного предвидения поведения системы в любой отрезок времени.

Замечание 2

Ньютоновский способ сразу стал главным инструментом познания сущности природы и всего живого на планете. Законы механики и методы математического анализа вскоре показали свою эффективность и значимость. Физический эксперимент, который базировался на измерительной технике, обеспечивал ученым небывалую ранее точность.

Физическое знание все в более значительной степени становилось центральной промышленной технологией, что стимулировало общее развитие других важных естественных наук.

В физике все изолированные ранее электричество, свет, магнетизм и теплота стали целыми и объединенными в электромагнитную гипотезу. И хотя сама природа тяготения оставалась так и неопределенной, ее действия возможно было рассчитать. Утвердилась и реализовалась концепция механистического детерминизма Лапласа, которая исходит из возможности точно определить поведение тел в любой момент времени, если изначально определены исходные условия.

Структура механики как науки казалась достаточно надежной и прочной, а также практически завершенной. В итоге сложилось впечатление, что знание физики и ее законов близко к своему финалу – столь мощную силу показал фундамент классической физики.

Интересоваться окружающим миром и закономерностями его функционирования и развития природно и правильно. Именно поэтому разумно обращать свое внимание на естественные науки, например, физику, которая объясняет саму сущность формирования и развития Вселенной. Основные физические законы несложно понять. Уже в очень юном возрасте школа знакомит детей с этими принципами.

Для многих начинается эта наука с учебника "Физика (7 класс)". Основные понятия и и термодинамики открываются перед школьниками, они знакомятся с ядром главных физических закономерностей. Но должно ли знание ограничиваться школьной скамьей? Какие физические законы должен знать каждый человек? Об этом и пойдет речь далее в статье.

Наука физика

Многие нюансы описываемой науки знакомы всем с раннего детства. А связано это с тем, что, в сущности, физика представляет собой одну из областей естествознания. Она повествует о законах природы, действие которых оказывает влияние на жизнь каждого, а во многом даже обеспечивает ее, об особенностях материи, ее структуре и закономерностях движения.

Термин «физика» был впервые зафиксирован Аристотелем еще в четвертом веке до нашей эры. Изначально он являлся синонимом понятия "философия". Ведь обе науки имели единую цель - правильным образом объяснить все механизмы функционирования Вселенной. Но уже в шестнадцатом веке вследствие научной революции физика стала самостоятельной.

Общий закон

Некоторые основные законы физики применяются в разнообразных отраслях науки. Кроме них существуют такие, которые принято считать общими для всей природы. Речь идет о

Он подразумевает, что энергия каждой замкнутой системы при протекании в ней любых явлений непременно сохраняется. Тем не менее она способна трансформироваться в другую форму и эффективно менять свое количественное содержание в различных частях названной системы. В то же время в незамкнутой системе энергия уменьшается при условии увеличения энергии любых тел и полей, которые вступают во взаимодействие с ней.

Помимо приведенного общего принципа, содержит физика основные понятия, формулы, законы, которые необходимы для толкования процессов, происходящих в окружающем мире. Их исследование может стать невероятно увлекательным занятием. Поэтому в этой статье будут рассмотрены основные законы физики кратко, а чтобы разобраться в них глубже, важно уделить им полноценное внимание.

Механика

Открывают юным ученым многие основные законы физики 7-9 классы школы, где более полно изучается такая отрасль науки, как механика. Ее базовые принципы описаны ниже.

  1. Закон относительности Галилея (также его называют механической закономерностью относительности, или базисом классической механики). Суть принципа заключается в том, что в аналогичных условиях механические процессы в любых инерциальных системах отсчета проходят совершенно идентично.
  2. Закон Гука. Его суть в том, что чем большим является воздействие на упругое тело (пружину, стержень, консоль, балку) со стороны, тем большей оказывается его деформация.

Законы Ньютона (представляют собой базис классической механики):

  1. Принцип инерции сообщает, что любое тело способно состоять в покое или двигаться равномерно и прямолинейно только в том случае, если никакие другие тела никаким образом на него не воздействуют, либо же если они каким-либо образом компенсируют действие друг друга. Чтобы изменить скорость движения, на тело необходимо воздействовать с какой-либо силой, и, конечно, результат воздействия одинаковой силы на разные по величине тела будет тоже различаться.
  2. Главная закономерность динамики утверждает, что чем больше равнодействующая сил, которые в текущий момент воздействуют на данное тело, тем больше полученное им ускорение. И, соответственно, чем больше масса тела, тем этот показатель меньше.
  3. Третий закон Ньютона сообщает, что любые два тела всегда взаимодействуют друг с другом по идентичной схеме: их силы имеют одну природу, являются эквивалентными по величине и обязательно имеют противоположное направление вдоль прямой, которая соединяет эти тела.
  4. Принцип относительности утверждает, что все явления, протекающие при одних и тех же условиях в инерциальных системах отсчета, проходят абсолютно идентичным образом.

Термодинамика

Школьный учебник, открывающий ученикам основные законы ("Физика. 7 класс"), знакомит их и с основами термодинамики. Ее принципы мы коротко рассмотрим далее.

Законы термодинамики, являющиеся базовыми в данной отрасли науки, имеют общий характер и не связаны с деталями строения конкретного вещества на уровне атомов. Кстати, эти принципы важны не только для физики, но и для химии, биологии, аэрокосмической техники и т. д.

Например, в названной отрасли существует не поддающееся логическому определению правило, что в замкнутой системе, внешние условия для которой неизменны, со временем устанавливается равновесное состояние. И процессы, продолжающиеся в ней, неизменно компенсируют друг друга.

Еще одно правило термодинамики подтверждает стремление системы, которая состоит из колоссального числа частиц, характеризующихся хаотическим движением, к самостоятельному переходу из менее вероятных для системы состояний в более вероятные.

А закон Гей-Люссака (его также называют утверждает, что для газа определенной массы в условиях стабильного давления результат деления его объема на абсолютную температуру непременно становится величиной постоянной.

Еще одно важное правило этой отрасли - первый закон термодинамики, который также принято называть принципом сохранения и превращения энергии для термодинамической системы. Согласно ему, любое количество теплоты, которое было сообщено системе, будет израсходовано исключительно на метаморфозу ее внутренней энергии и совершение ею работы по отношению к любым действующим внешним силам. Именно эта закономерность и стала базисом для формирования схемы работы тепловых машин.

Другая газовая закономерность - это закон Шарля. Он гласит, что чем больше давление определенной массы идеального газа в условиях сохранения постоянного объема, тем больше его температура.

Электричество

Открывает юным ученым интересные основные законы физики 10 класс школы. В это время изучаются главные принципы природы и закономерности действия электрического тока, а также другие нюансы.

Закон Ампера, например, утверждает, что проводники, соединенные параллельно, по которым течет ток в одинаковом направлении, неизбежно притягиваются, а в случае противоположного направления тока, соответственно, отталкиваются. Порой такое же название используют для физического закона, который определяет силу, действующую в существующем магнитном поле на небольшой участок проводника, в данный момент проводящего ток. Ее так и называют - сила Ампера. Это открытие было сделано ученым в первой половине девятнадцатого века (а именно в 1820 г.).

Закон сохранения заряда является одним из базовых принципов природы. Он гласит, что алгебраическая сумма всех электрических зарядов, возникающих в любой электрически изолированной системе, всегда сохраняется (становится постоянной). Несмотря на это, названный принцип не исключает и возникновения в таких системах новых заряженных частиц в результате протекания некоторых процессов. Тем не менее общий электрический заряд всех новообразованных частиц непременно должен равняться нулю.

Закон Кулона является одним из основных в электростатике. Он выражает принцип силы взаимодействия между неподвижными точечными зарядами и поясняет количественное исчисление расстояния между ними. Закон Кулона позволяет обосновать базовые принципы электродинамики экспериментальным образом. Он гласит, что неподвижные точечные заряды непременно взаимодействуют между собой с силой, которая тем выше, чем больше произведение их величин и, соответственно, тем меньше, чем меньше квадрат расстояния между рассматриваемыми зарядами и среды, в которой и происходит описываемое взаимодействие.

Закон Ома является одним из базовых принципов электричества. Он гласит, что чем больше сила постоянного электрического тока, действующего на определенном участке цепи, тем больше напряжение на ее концах.

Называют принцип, который позволяет определить направление в проводнике тока, движущегося в условиях воздействия магнитного поля определенным образом. Для этого необходимо расположить кисть правой руки так, чтобы линии магнитной индукции образно касались раскрытой ладони, а большой палец вытянуть по направлению движения проводника. В таком случае остальные четыре выпрямленных пальца определят направление движения индукционного тока.

Также этот принцип помогает выяснить точное расположение линий магнитной индукции прямолинейного проводника, проводящего ток в данный момент. Это происходит так: поместите большой палец правой руки таким образом, чтобы он указывал а остальными четырьмя пальцами образно обхватите проводник. Расположение этих пальцев и продемонстрирует точное направление линий магнитной индукции.

Принцип электромагнитной индукции представляет собой закономерность, которая объясняет процесс работы трансформаторов, генераторов, электродвигателей. Данный закон состоит в следующем: в замкнутом контуре генерируемая индукции тем больше, чем больше скорость изменения магнитного потока.

Оптика

Отрасль "Оптика" также отражает часть школьной программы (основные законы физики: 7-9 классы). Поэтому эти принципы не так сложны для понимания, как может показаться на первый взгляд. Их изучение приносит с собой не просто дополнительные знания, но лучшее понимание окружающей действительности. Основные законы физики, которые можно отнести к области изучения оптики, следующие:

  1. Принцип Гюйнеса. Он представляет собой метод, который позволяет эффективно определить в каждую конкретную долю секунды точное положение фронта волны. Суть его состоит в следующем: все точки, которые оказываются на пути у фронта волны в определенную долю секунды, в сущности, сами по себе становятся источниками сферических волн (вторичных), в то время как размещение фронта волны в ту же долю секунду является идентичным поверхности, которая огибает все сферические волны (вторичные). Данный принцип используется с целью объяснения существующих законов, связанных с преломлением света и его отражением.
  2. Принцип Гюйгенса-Френеля отражает эффективный метод разрешения вопросов, связанных с распространением волн. Он помогать объяснить элементарные задачи, связанные с дифракцией света.
  3. волн. Применяется в равной степени и для отражения в зеркале. Его суть состоит в том, что как ниспадающий луч, так и тот, который был отражен, а также перпендикуляр, построенный из точки падения луча, располагаются в единой плоскости. Важно также помнить, что при этом угол, под которым падает луч, всегда абсолютно равен углу преломления.
  4. Принцип преломления света. Это изменение траектории движения электромагнитной волны (света) в момент движения из одной однородной среды в другую, которая значительно отличается от первой по ряду показателей преломления. Скорость распространения света в них различна.
  5. Закон прямолинейного распространения света. По своей сути он является законом, относящимся к области геометрической оптики, и заключается в следующем: в любой однородной среде (вне зависимости от ее природы) свет распространяется строго прямолинейно, по кратчайшему расстоянию. Данный закон просто и доступно объясняет образование тени.

Атомная и ядерная физика

Основные законы квантовой физики, а также основы атомной и ядерной физики изучаются в старших классах средней школы и высших учебных заведениях.

Так, постулаты Бора представляют собой ряд базовых гипотез, которые стали основой теории. Ее суть состоит в том, что любая атомная система может оставаться устойчивой исключительно в стационарных состояниях. Любое излучение или поглощение энергии атомом непременно происходит с использованием принципа, суть которого следующая: излучение, связанное с транспортацией, становится монохроматическим.

Эти постулаты относятся к стандартной школьной программе, изучающей основные законы физики (11 класс). Их знание является обязательным для выпускника.

Основные законы физики, которые должен знать человек

Некоторые физические принципы, хоть и относятся к одной из отраслей данной науки, тем не менее носят общий характер и должны быть известны всем. Перечислим основные законы физики, которые должен знать человек:

  • Закон Архимеда (относится к областям гидро-, а также аэростатики). Он подразумевает, что на любое тело, которое было погружено в газообразное вещество или в жидкость, действует своего рода выталкивающая сила, которая непременно направлена вертикально вверх. Эта сила всегда численно равна весу вытесненной телом жидкости или газа.
  • Другая формулировка этого закона следующая: тело, погруженное в газ или жидкость, непременно теряет в весе столько же, сколько составила масса жидкости или газа, в который оно было погружено. Этот закон и стал базовым постулатом теории плавания тел.
  • Закон всемирного тяготения (открыт Ньютоном). Его суть состоит в том, что абсолютно все тела неизбежно притягиваются друг к другу с силой, которая тем больше, чем больше произведение масс данных тел и, соответственно, тем меньше, чем меньше квадрат расстояния между ними.

Это и есть 3 основных закона физики, которые должен знать каждый, желающий разобраться в механизме функционирования окружающего мира и особенностях протекания процессов, происходящих в нем. Понять принцип их действия достаточно просто.

Ценность подобных знаний

Основные законы физики обязаны быть в багаже знаний человека, независимо от его возраста и рода деятельности. Они отражают механизм существования всей сегодняшней действительности, и, в сущности, являются единственной константой в непрерывно изменяющемся мире.

Основные законы, понятия физики открывают новые возможности для изучения окружающего мира. Их знание помогает понимать механизм существования Вселенной и движения всех космических тел. Оно превращает нас не в просто соглядатаев ежедневных событий и процессов, а позволяет осознавать их. Когда человек ясно понимает основные законы физики, то есть все происходящие вокруг него процессы, он получает возможность управлять ими наиболее эффективным образом, совершая открытия и делая тем самым свою жизнь более комфортной.

Итоги

Некоторые вынуждены углубленно изучать основные законы физики для ЕГЭ, другие - по роду деятельности, а некоторые - из научного любопытства. Независимо от целей изучения данной науки, пользу полученных знаний трудно переоценить. Нет ничего более удовлетворяющего, чем понимание основных механизмов и закономерностей существования окружающего мира.

Не оставайтесь равнодушными - развивайтесь!

Похожие статьи

© 2024 my-kross.ru. Кошки и собаки. Маленькие животные. Здоровье. Лекарство.