Arithmetic progression is a number sequence. Arithmetic progression: what is it? Formula for the first n numbers of an arithmetic progression formula


For example, the sequence \(2\); \(5\); \(8\); \(eleven\); \(14\)... is an arithmetic progression, because each subsequent element differs from the previous one by three (can be obtained from the previous one by adding three):

In this progression, the difference \(d\) is positive (equal to \(3\)), and therefore each next term is greater than the previous one. Such progressions are called increasing.

However, \(d\) can also be negative number. For example, in arithmetic progression \(16\); \(10\); \(4\); \(-2\); \(-8\)... the progression difference \(d\) is equal to minus six.

And in this case, each next element will be smaller than the previous one. These progressions are called decreasing.

Arithmetic progression notation

Progression is indicated by a small Latin letter.

Numbers that form a progression are called members(or elements).

They are denoted by the same letter as an arithmetic progression, but with a numerical index equal to the number of the element in order.

For example, arithmetic progression\(a_n = \left\( 2; 5; 8; 11; 14…\right\)\) consists of the elements \(a_1=2\); \(a_2=5\); \(a_3=8\) and so on.

In other words, for the progression \(a_n = \left\(2; 5; 8; 11; 14…\right\)\)

Solving arithmetic progression problems

In principle, the information presented above is already enough to solve almost any arithmetic progression problem (including those offered at the OGE).

Example (OGE). The arithmetic progression is specified by the conditions \(b_1=7; d=4\). Find \(b_5\).
Solution:

Answer: \(b_5=23\)

Example (OGE). The first three terms of an arithmetic progression are given: \(62; 49; 36…\) Find the value of the first negative term of this progression..
Solution:

We are given the first elements of the sequence and know that it is an arithmetic progression. That is, each element differs from its neighbor by the same number. Let's find out which one by subtracting the previous one from the next element: \(d=49-62=-13\).

Now we can restore our progression to the (first negative) element we need.

Ready. You can write an answer.

Answer: \(-3\)

Example (OGE). Given several consecutive elements of an arithmetic progression: \(…5; x; 10; 12.5...\) Find the value of the element designated by the letter \(x\).
Solution:


To find \(x\), we need to know how much the next element differs from the previous one, in other words, the progression difference. Let's find it from two known neighboring elements: \(d=12.5-10=2.5\).

And now we can easily find what we are looking for: \(x=5+2.5=7.5\).


Ready. You can write an answer.

Answer: \(7,5\).

Example (OGE). The arithmetic progression is defined by the following conditions: \(a_1=-11\); \(a_(n+1)=a_n+5\) Find the sum of the first six terms of this progression.
Solution:

We need to find the sum of the first six terms of the progression. But we do not know their meanings; we are given only the first element. Therefore, we first calculate the values ​​​​one by one, using what is given to us:

\(n=1\); \(a_(1+1)=a_1+5=-11+5=-6\)
\(n=2\); \(a_(2+1)=a_2+5=-6+5=-1\)
\(n=3\); \(a_(3+1)=a_3+5=-1+5=4\)
And having calculated the six elements we need, we find their sum.

\(S_6=a_1+a_2+a_3+a_4+a_5+a_6=\)
\(=(-11)+(-6)+(-1)+4+9+14=9\)

The required amount has been found.

Answer: \(S_6=9\).

Example (OGE). In arithmetic progression \(a_(12)=23\); \(a_(16)=51\). Find the difference of this progression.
Solution:

Answer: \(d=7\).

Important formulas for arithmetic progression

As you can see, many problems on arithmetic progression can be solved simply by understanding the main thing - that an arithmetic progression is a chain of numbers, and each subsequent element in this chain is obtained by adding the same number to the previous one (the difference of the progression).

However, sometimes there are situations when deciding “head-on” is very inconvenient. For example, imagine that in the very first example we need to find not the fifth element \(b_5\), but the three hundred and eighty-sixth \(b_(386)\). Should we add four \(385\) times? Or imagine that in the penultimate example you need to find the sum of the first seventy-three elements. You'll be tired of counting...

Therefore, in such cases they do not solve things “head-on”, but use special formulas derived for arithmetic progression. And the main ones are the formula for the nth term of the progression and the formula for the sum of \(n\) first terms.

Formula of the \(n\)th term: \(a_n=a_1+(n-1)d\), where \(a_1\) is the first term of the progression;
\(n\) – number of the required element;
\(a_n\) – term of the progression with number \(n\).


This formula allows us to quickly find even the three-hundredth or the millionth element, knowing only the first and the difference of the progression.

Example. The arithmetic progression is specified by the conditions: \(b_1=-159\); \(d=8.2\). Find \(b_(246)\).
Solution:

Answer: \(b_(246)=1850\).

Formula for the sum of the first n terms: \(S_n=\frac(a_1+a_n)(2) \cdot n\), where



\(a_n\) – the last summed term;


Example (OGE). The arithmetic progression is specified by the conditions \(a_n=3.4n-0.6\). Find the sum of the first \(25\) terms of this progression.
Solution:

\(S_(25)=\)\(\frac(a_1+a_(25))(2 )\) \(\cdot 25\)

To calculate the sum of the first twenty-five terms, we need to know the value of the first and twenty-fifth terms.
Our progression is given by the formula of the nth term depending on its number (for more details, see). Let's calculate the first element by substituting one for \(n\).

\(n=1;\) \(a_1=3.4·1-0.6=2.8\)

Now let's find the twenty-fifth term by substituting twenty-five instead of \(n\).

\(n=25;\) \(a_(25)=3.4·25-0.6=84.4\)

Well, now we can easily calculate the required amount.

\(S_(25)=\)\(\frac(a_1+a_(25))(2)\) \(\cdot 25=\)
\(=\) \(\frac(2.8+84.4)(2)\) \(\cdot 25 =\)\(1090\)

The answer is ready.

Answer: \(S_(25)=1090\).

For the sum \(n\) of the first terms, you can get another formula: you just need to \(S_(25)=\)\(\frac(a_1+a_(25))(2)\) \(\cdot 25\ ) instead of \(a_n\) substitute the formula for it \(a_n=a_1+(n-1)d\). We get:

Formula for the sum of the first n terms: \(S_n=\)\(\frac(2a_1+(n-1)d)(2)\) \(\cdot n\), where

\(S_n\) – the required sum of \(n\) first elements;
\(a_1\) – the first summed term;
\(d\) – progression difference;
\(n\) – number of elements in total.

Example. Find the sum of the first \(33\)-ex terms of the arithmetic progression: \(17\); \(15.5\); \(14\)…
Solution:

Answer: \(S_(33)=-231\).

More complex arithmetic progression problems

Now you have all the information you need to solve almost any arithmetic progression problem. Let’s finish the topic by considering problems in which you not only need to apply formulas, but also think a little (in mathematics this can be useful ☺)

Example (OGE). Find the sum of all negative terms of the progression: \(-19.3\); \(-19\); \(-18.7\)…
Solution:

\(S_n=\)\(\frac(2a_1+(n-1)d)(2)\) \(\cdot n\)

The task is very similar to the previous one. We begin to solve the same thing: first we find \(d\).

\(d=a_2-a_1=-19-(-19.3)=0.3\)

Now I would like to substitute \(d\) into the formula for the sum... and here a small nuance emerges - we do not know \(n\). In other words, we don’t know how many terms will need to be added. How to find out? Let's think. We will stop adding elements when we reach the first positive element. That is, you need to find out the number of this element. How? Let's write down the formula for calculating any element of an arithmetic progression: \(a_n=a_1+(n-1)d\) for our case.

\(a_n=a_1+(n-1)d\)

\(a_n=-19.3+(n-1)·0.3\)

We need \(a_n\) to become greater than zero. Let's find out at what \(n\) this will happen.

\(-19.3+(n-1)·0.3>0\)

\((n-1)·0.3>19.3\) \(|:0.3\)

We divide both sides of the inequality by \(0.3\).

\(n-1>\)\(\frac(19.3)(0.3)\)

We transfer minus one, not forgetting to change the signs

\(n>\)\(\frac(19.3)(0.3)\) \(+1\)

Let's calculate...

\(n>65,333…\)

...and it turns out that the first positive element will have the number \(66\). Accordingly, the last negative one has \(n=65\). Just in case, let's check this.

\(n=65;\) \(a_(65)=-19.3+(65-1)·0.3=-0.1\)
\(n=66;\) \(a_(66)=-19.3+(66-1)·0.3=0.2\)

So we need to add the first \(65\) elements.

\(S_(65)=\) \(\frac(2 \cdot (-19.3)+(65-1)0.3)(2)\)\(\cdot 65\)
\(S_(65)=\)\((-38.6+19.2)(2)\)\(\cdot 65=-630.5\)

The answer is ready.

Answer: \(S_(65)=-630.5\).

Example (OGE). The arithmetic progression is specified by the conditions: \(a_1=-33\); \(a_(n+1)=a_n+4\). Find the sum from the \(26\)th to the \(42\) element inclusive.
Solution:

\(a_1=-33;\) \(a_(n+1)=a_n+4\)

In this problem you also need to find the sum of elements, but starting not from the first, but from the \(26\)th. For such a case we do not have a formula. How to decide?
It’s easy - to get the sum from the \(26\)th to the \(42\)th, you must first find the sum from the \(1\)th to the \(42\)th, and then subtract from it the sum from first to \(25\)th (see picture).


For our progression \(a_1=-33\), and the difference \(d=4\) (after all, it is the four that we add to the previous element to find the next one). Knowing this, we find the sum of the first \(42\)-y elements.

\(S_(42)=\) \(\frac(2 \cdot (-33)+(42-1)4)(2)\)\(\cdot 42=\)
\(=\)\(\frac(-66+164)(2)\) \(\cdot 42=2058\)

Now the sum of the first \(25\) elements.

\(S_(25)=\) \(\frac(2 \cdot (-33)+(25-1)4)(2)\)\(\cdot 25=\)
\(=\)\(\frac(-66+96)(2)\) \(\cdot 25=375\)

And finally, we calculate the answer.

\(S=S_(42)-S_(25)=2058-375=1683\)

Answer: \(S=1683\).

For arithmetic progression, there are several more formulas that we did not consider in this article due to their low practical usefulness. However, you can easily find them.

When studying algebra in a secondary school (grade 9) one of important topics is the study of number sequences, which include progressions - geometric and arithmetic. In this article we will look at an arithmetic progression and examples with solutions.

What is an arithmetic progression?

To understand this, it is necessary to define the progression in question, as well as provide the basic formulas that will be used later in solving problems.

An arithmetic or algebraic progression is a set of ordered rational numbers, each term of which differs from the previous one by some constant value. This value is called the difference. That is, knowing any member of an ordered series of numbers and the difference, you can restore the entire arithmetic progression.

Let's give an example. The following sequence of numbers will be an arithmetic progression: 4, 8, 12, 16, ..., since the difference in this case is 4 (8 - 4 = 12 - 8 = 16 - 12). But the set of numbers 3, 5, 8, 12, 17 can no longer be attributed to the type of progression under consideration, since the difference for it is not a constant value (5 - 3 ≠ 8 - 5 ≠ 12 - 8 ≠ 17 - 12).

Important Formulas

Let us now present the basic formulas that will be needed to solve problems using arithmetic progression. Let us denote by the symbol a n nth term sequences where n is an integer. We denote the difference by the Latin letter d. Then the following expressions are valid:

  1. To determine the value of the nth term, the following formula is suitable: a n = (n-1)*d+a 1 .
  2. To determine the sum of the first n terms: S n = (a n +a 1)*n/2.

To understand any examples of arithmetic progression with solutions in 9th grade, it is enough to remember these two formulas, since any problems of the type under consideration are based on their use. You should also remember that the progression difference is determined by the formula: d = a n - a n-1.

Example #1: finding an unknown term

Let's give a simple example of an arithmetic progression and the formulas that need to be used to solve it.

Let the sequence 10, 8, 6, 4, ... be given, you need to find five terms in it.

From the conditions of the problem it already follows that the first 4 terms are known. The fifth can be defined in two ways:

  1. Let's first calculate the difference. We have: d = 8 - 10 = -2. Similarly, one could take any two other terms, standing nearby together. For example, d = 4 - 6 = -2. Since it is known that d = a n - a n-1, then d = a 5 - a 4, from which we get: a 5 = a 4 + d. We substitute the known values: a 5 = 4 + (-2) = 2.
  2. The second method also requires knowledge of the difference of the progression in question, so you first need to determine it as shown above (d = -2). Knowing that the first term a 1 = 10, we use the formula for the n number of the sequence. We have: a n = (n - 1) * d + a 1 = (n - 1) * (-2) + 10 = 12 - 2*n. Substituting n = 5 into the last expression, we get: a 5 = 12-2 * 5 = 2.

As you can see, both solutions led to the same result. Note that in this example the progression difference d is a negative value. Such sequences are called decreasing, since each next term is less than the previous one.

Example #2: progression difference

Now let’s complicate the task a little, let’s give an example of how

It is known that in some the 1st term is equal to 6, and the 7th term is equal to 18. It is necessary to find the difference and restore this sequence to the 7th term.

Let's use the formula to determine the unknown term: a n = (n - 1) * d + a 1 . Let's substitute the known data from the condition into it, that is, the numbers a 1 and a 7, we have: 18 = 6 + 6 * d. From this expression you can easily calculate the difference: d = (18 - 6) /6 = 2. Thus, we have answered the first part of the problem.

To restore the sequence to the 7th term, you should use the definition of an algebraic progression, that is, a 2 = a 1 + d, a 3 = a 2 + d, and so on. As a result, we restore the entire sequence: a 1 = 6, a 2 = 6 + 2=8, a 3 = 8 + 2 = 10, a 4 = 10 + 2 = 12, a 5 = 12 + 2 = 14, a 6 = 14 + 2 = 16, a 7 = 18.

Example No. 3: drawing up a progression

Let's complicate the problem even more. Now we need to answer the question of how to find an arithmetic progression. The following example can be given: two numbers are given, for example - 4 and 5. It is necessary to create an algebraic progression so that three more terms are placed between these.

Before you start solving this problem, you need to understand what place the given numbers will occupy in the future progression. Since there will be three more terms between them, then a 1 = -4 and a 5 = 5. Having established this, we move on to the problem, which is similar to the previous one. Again, for the nth term we use the formula, we get: a 5 = a 1 + 4 * d. From: d = (a 5 - a 1)/4 = (5 - (-4)) / 4 = 2.25. What we got here is not an integer value of the difference, but it is a rational number, so the formulas for the algebraic progression remain the same.

Now let's add the found difference to a 1 and restore the missing terms of the progression. We get: a 1 = - 4, a 2 = - 4 + 2.25 = - 1.75, a 3 = -1.75 + 2.25 = 0.5, a 4 = 0.5 + 2.25 = 2.75, a 5 = 2.75 + 2.25 = 5, which coincided with the conditions of the problem.

Example No. 4: first term of progression

Let's continue to give examples of arithmetic progression with solutions. In all previous problems, the first number of the algebraic progression was known. Now let's consider a problem of a different type: let two numbers be given, where a 15 = 50 and a 43 = 37. It is necessary to find which number this sequence begins with.

The formulas used so far assume knowledge of a 1 and d. In the problem statement, nothing is known about these numbers. Nevertheless, we will write down expressions for each term about which information is available: a 15 = a 1 + 14 * d and a 43 = a 1 + 42 * d. We received two equations in which there are 2 unknown quantities (a 1 and d). This means that the problem is reduced to solving a system of linear equations.

The easiest way to solve this system is to express a 1 in each equation and then compare the resulting expressions. First equation: a 1 = a 15 - 14 * d = 50 - 14 * d; second equation: a 1 = a 43 - 42 * d = 37 - 42 * d. Equating these expressions, we get: 50 - 14 * d = 37 - 42 * d, whence the difference d = (37 - 50) / (42 - 14) = - 0.464 (only 3 decimal places are given).

Knowing d, you can use any of the 2 expressions above for a 1. For example, first: a 1 = 50 - 14 * d = 50 - 14 * (- 0.464) = 56.496.

If you have doubts about the result obtained, you can check it, for example, determine the 43rd term of the progression, which is specified in the condition. We get: a 43 = a 1 + 42 * d = 56.496 + 42 * (- 0.464) = 37.008. The small error is due to the fact that rounding to thousandths was used in the calculations.

Example No. 5: amount

Now let's look at several examples with solutions for the sum of an arithmetic progression.

Let a numerical progression of the following form be given: 1, 2, 3, 4, ...,. How to calculate the sum of 100 of these numbers?

Thanks to the development of computer technology, it is possible to solve this problem, that is, add all the numbers sequentially, which the computer will do as soon as a person presses the Enter key. However, the problem can be solved mentally if you pay attention that the presented series of numbers is an algebraic progression, and its difference is equal to 1. Applying the formula for the sum, we get: S n = n * (a 1 + a n) / 2 = 100 * (1 + 100) / 2 = 5050.

It is interesting to note that this problem is called “Gaussian” because at the beginning of the 18th century the famous German, still only 10 years old, was able to solve it in his head in a few seconds. The boy did not know the formula for the sum of an algebraic progression, but he noticed that if you add the numbers at the ends of the sequence in pairs, you always get the same result, that is, 1 + 100 = 2 + 99 = 3 + 98 = ..., and since these sums will be exactly 50 (100 / 2), then to get the correct answer it is enough to multiply 50 by 101.

Example No. 6: sum of terms from n to m

Another typical example of the sum of an arithmetic progression is the following: given a series of numbers: 3, 7, 11, 15, ..., you need to find what the sum of its terms from 8 to 14 will be equal to.

The problem is solved in two ways. The first of them involves finding unknown terms from 8 to 14, and then summing them sequentially. Since there are few terms, this method is not quite labor-intensive. Nevertheless, it is proposed to solve this problem using a second method, which is more universal.

The idea is to obtain a formula for the sum of the algebraic progression between terms m and n, where n > m are integers. For both cases, we write two expressions for the sum:

  1. S m = m * (a m + a 1) / 2.
  2. S n = n * (a n + a 1) / 2.

Since n > m, it is obvious that the 2nd sum includes the first. The last conclusion means that if we take the difference between these sums and add the term a m to it (in the case of taking the difference, it is subtracted from the sum S n), we will obtain the necessary answer to the problem. We have: S mn = S n - S m + a m =n * (a 1 + a n) / 2 - m *(a 1 + a m)/2 + a m = a 1 * (n - m) / 2 + a n * n/2 + a m * (1- m/2). It is necessary to substitute formulas for a n and a m into this expression. Then we get: S mn = a 1 * (n - m) / 2 + n * (a 1 + (n - 1) * d) / 2 + (a 1 + (m - 1) * d) * (1 - m / 2) = a 1 * (n - m + 1) + d * n * (n - 1) / 2 + d *(3 * m - m 2 - 2) / 2.

The resulting formula is somewhat cumbersome, however, the sum S mn depends only on n, m, a 1 and d. In our case, a 1 = 3, d = 4, n = 14, m = 8. Substituting these numbers, we get: S mn = 301.

As can be seen from the above solutions, all problems are based on knowledge of the expression for the nth term and the formula for the sum of the set of first terms. Before starting to solve any of these problems, it is recommended that you carefully read the condition, clearly understand what you need to find, and only then proceed with the solution.

Another tip is to strive for simplicity, that is, if you can answer a question without using complex mathematical calculations, then you need to do just that, since in this case the likelihood of making a mistake is less. For example, in the example of an arithmetic progression with solution No. 6, one could stop at the formula S mn = n * (a 1 + a n) / 2 - m * (a 1 + a m) / 2 + a m, and divide the overall problem into separate subtasks (in this case, first find the terms a n and a m).

If you have doubts about the result obtained, it is recommended to check it, as was done in some of the examples given. We found out how to find an arithmetic progression. If you figure it out, it's not that difficult.

What is the main essence of the formula?

This formula allows you to find any BY HIS NUMBER " n" .

Of course, you also need to know the first term a 1 and progression difference d, well, without these parameters you can’t write down a specific progression.

Memorizing (or cribing) this formula is not enough. You need to understand its essence and apply the formula in various problems. And also not to forget at the right moment, yes...) How not forget- I don't know. And here how to remember If necessary, I will definitely advise you. For those who complete the lesson to the end.)

So, let's look at the formula for the nth term of an arithmetic progression.

What is a formula in general? By the way, take a look if you haven’t read it. Everything is simple there. It remains to figure out what it is nth term.

Progression in general view can be written as a series of numbers:

a 1, a 2, a 3, a 4, a 5, .....

a 1- denotes the first term of an arithmetic progression, a 3- third member, a 4- the fourth, and so on. If we are interested in the fifth term, let's say we are working with a 5, if one hundred and twentieth - s a 120.

How can we define it in general terms? any term of an arithmetic progression, with any number? Very simple! Like this:

a n

That's what it is nth term of an arithmetic progression. The letter n hides all the member numbers at once: 1, 2, 3, 4, and so on.

And what does such a record give us? Just think, instead of a number they wrote down a letter...

This notation gives us a powerful tool for working with arithmetic progression. Using the notation a n, we can quickly find any member any arithmetic progression. And solve a bunch of other progression problems. You'll see for yourself further.

In the formula for the nth term of an arithmetic progression:

a n = a 1 + (n-1)d

a 1- the first term of an arithmetic progression;

n- member number.

The formula connects the key parameters of any progression: a n ; a 1 ; d And n. All progression problems revolve around these parameters.

The nth term formula can also be used to write a specific progression. For example, the problem may say that the progression is specified by the condition:

a n = 5 + (n-1) 2.

Such a problem can be a dead end... There is neither a series nor a difference... But, comparing the condition with the formula, it is easy to understand that in this progression a 1 =5, and d=2.

And it can be even worse!) If we take the same condition: a n = 5 + (n-1) 2, Yes, open the parentheses and bring similar ones? We get a new formula:

a n = 3 + 2n.

This Just not general, but for a specific progression. This is where the pitfall lurks. Some people think that the first term is a three. Although in reality the first term is five... A little lower we will work with such a modified formula.

In progression problems there is another notation - a n+1. This is, as you guessed, the “n plus first” term of the progression. Its meaning is simple and harmless.) This is a member of the progression whose number is greater than number n by one. For example, if in some problem we take a n fifth term then a n+1 will be the sixth member. Etc.

Most often the designation a n+1 found in recurrence formulas. Don't be afraid of this scary word!) This is just a way of expressing a member of an arithmetic progression through the previous one. Let's say we are given an arithmetic progression in this form, using a recurrent formula:

a n+1 = a n +3

a 2 = a 1 + 3 = 5+3 = 8

a 3 = a 2 + 3 = 8+3 = 11

The fourth - through the third, the fifth - through the fourth, and so on. How can we immediately count, say, the twentieth term? a 20? But there’s no way!) Until we find out the 19th term, we can’t count the 20th. This is the fundamental difference between the recurrent formula and the formula of the nth term. Recurrent works only through previous term, and the formula of the nth term is through first and allows straightaway find any member by its number. Without calculating the entire series of numbers in order.

In an arithmetic progression, it is easy to turn a recurrent formula into a regular one. Count a pair of consecutive terms, calculate the difference d, find, if necessary, the first term a 1, write the formula in its usual form, and work with it. Such tasks are often encountered in the State Academy of Sciences.

Application of the formula for the nth term of an arithmetic progression.

First, let's look at the direct application of the formula. At the end of the previous lesson there was a problem:

An arithmetic progression (a n) is given. Find a 121 if a 1 =3 and d=1/6.

This problem can be solved without any formulas, simply based on the meaning of an arithmetic progression. Add and add... An hour or two.)

And according to the formula, the solution will take less than a minute. You can time it.) Let's decide.

The conditions provide all the data for using the formula: a 1 =3, d=1/6. It remains to figure out what is equal n. No problem! We need to find a 121. So we write:

Please pay attention! Instead of an index n a specific number appeared: 121. Which is quite logical.) We are interested in the member of the arithmetic progression number one hundred twenty one. This will be ours n. This is the meaning n= 121 we will substitute further into the formula, in brackets. We substitute all the numbers into the formula and calculate:

a 121 = 3 + (121-1) 1/6 = 3+20 = 23

That's it. Just as quickly one could find the five hundred and tenth term, and the thousand and third, any one. We put instead n the desired number in the index of the letter " a" and in brackets, and we count.

Let me remind you the point: this formula allows you to find any arithmetic progression term BY HIS NUMBER " n" .

Let's solve the problem in a more cunning way. Let us come across the following problem:

Find the first term of the arithmetic progression (a n), if a 17 =-2; d=-0.5.

If you have any difficulties, I will tell you the first step. Write down the formula for the nth term of an arithmetic progression! Yes Yes. Write down with your hands, right in your notebook:

a n = a 1 + (n-1)d

And now, looking at the letters of the formula, we understand what data we have and what is missing? Available d=-0.5, there is a seventeenth member... Is that it? If you think that’s it, then you won’t solve the problem, yes...

We still have a number n! In condition a 17 =-2 hidden two parameters. This is both the value of the seventeenth term (-2) and its number (17). Those. n=17. This “trifle” often slips past the head, and without it, (without the “trifle”, not the head!) the problem cannot be solved. Although... and without a head too.)

Now we can simply stupidly substitute our data into the formula:

a 17 = a 1 + (17-1)·(-0.5)

Oh yes, a 17 we know it's -2. Okay, let's substitute:

-2 = a 1 + (17-1)·(-0.5)

That's basically all. It remains to express the first term of the arithmetic progression from the formula and calculate it. The answer will be: a 1 = 6.

This technique - writing down a formula and simply substituting known data - is a great help in simple tasks. Well, of course, you must be able to express a variable from a formula, but what to do!? Without this skill, mathematics may not be studied at all...

Another popular puzzle:

Find the difference of the arithmetic progression (a n), if a 1 =2; a 15 =12.

What are we doing? You will be surprised, we are writing the formula!)

a n = a 1 + (n-1)d

Let's consider what we know: a 1 =2; a 15 =12; and (I’ll especially highlight!) n=15. Feel free to substitute this into the formula:

12=2 + (15-1)d

We do the arithmetic.)

12=2 + 14d

d=10/14 = 5/7

This is the correct answer.

So, the tasks for a n, a 1 And d decided. All that remains is to learn how to find the number:

The number 99 is a member of the arithmetic progression (a n), where a 1 =12; d=3. Find this member's number.

We substitute the quantities known to us into the formula of the nth term:

a n = 12 + (n-1) 3

At first glance, there are two unknown quantities here: a n and n. But a n- this is some member of the progression with a number n...And we know this member of the progression! It's 99. We don't know its number. n, So this number is what you need to find. We substitute the term of the progression 99 into the formula:

99 = 12 + (n-1) 3

We express from the formula n, we think. We get the answer: n=30.

And now a problem on the same topic, but more creative):

Determine whether the number 117 is a member of the arithmetic progression (a n):

-3,6; -2,4; -1,2 ...

Let's write the formula again. What, there are no parameters? Hm... Why are we given eyes?) Do we see the first term of the progression? We see. This is -3.6. You can safely write: a 1 = -3.6. Difference d Can you tell from the series? It’s easy if you know what the difference of an arithmetic progression is:

d = -2.4 - (-3.6) = 1.2

So, we did the simplest thing. It remains to deal with the unknown number n and the incomprehensible number 117. In the previous problem, at least it was known that it was the term of the progression that was given. But here we don’t even know... What to do!? Well, how to be, how to be... Turn on your creative abilities!)

We suppose that 117 is, after all, a member of our progression. With an unknown number n. And, just like in the previous problem, let's try to find this number. Those. we write the formula (yes, yes!)) and substitute our numbers:

117 = -3.6 + (n-1) 1.2

Again we express from the formulan, we count and get:

Oops! The number turned out fractional! One hundred and one and a half. And fractional numbers in progressions can not be. What conclusion can we draw? Yes! Number 117 is not member of our progression. It is somewhere between the one hundred and first and one hundred and second terms. If the number turned out natural, i.e. is a positive integer, then the number would be a member of the progression with the number found. And in our case, the answer to the problem will be: No.

A task based on a real version of the GIA:

An arithmetic progression is given by the condition:

a n = -4 + 6.8n

Find the first and tenth terms of the progression.

Here the progression is set in an unusual way. Some kind of formula... It happens.) However, this formula (as I wrote above) - also the formula for the nth term of an arithmetic progression! She also allows find any member of the progression by its number.

We are looking for the first member. The one who thinks. that the first term is minus four is fatally mistaken!) Because the formula in the problem is modified. The first term of the arithmetic progression in it hidden. It’s okay, we’ll find it now.)

Just as in previous problems, we substitute n=1 into this formula:

a 1 = -4 + 6.8 1 = 2.8

Here! The first term is 2.8, not -4!

We look for the tenth term in the same way:

a 10 = -4 + 6.8 10 = 64

That's it.

And now, for those who have read to these lines, the promised bonus.)

Suppose, in a difficult combat situation of the State Examination or Unified State Examination, you have forgotten the useful formula for the nth term of an arithmetic progression. I remember something, but somehow uncertainly... Or n there, or n+1, or n-1... How to be!?

Calm! This formula is easy to derive. It’s not very strict, but it’s definitely enough for confidence and the right decision!) To make a conclusion, it’s enough to remember the elementary meaning of an arithmetic progression and have a couple of minutes of time. You just need to draw a picture. For clarity.

Draw a number line and mark the first one on it. second, third, etc. members. And we note the difference d between members. Like this:

We look at the picture and think: what does the second term equal? Second one d:

a 2 =a 1 + 1 d

What is the third term? Third term equals first term plus two d.

a 3 =a 1 + 2 d

Do you get it? It’s not for nothing that I highlight some words in bold. Okay, one more step).

What is the fourth term? Fourth term equals first term plus three d.

a 4 =a 1 + 3 d

It's time to realize that the number of gaps, i.e. d, Always one less than the number of the member you are looking for n. That is, to the number n, number of spaces will n-1. Therefore, the formula will be (without variations!):

a n = a 1 + (n-1)d

In general, visual pictures are very helpful in solving many problems in mathematics. Don't neglect the pictures. But if it’s difficult to draw a picture, then... only a formula!) In addition, the formula of the nth term allows you to connect the entire powerful arsenal of mathematics to the solution - equations, inequalities, systems, etc. You can't insert a picture into the equation...

Tasks for independent solution.

To warm up:

1. In arithmetic progression (a n) a 2 =3; a 5 =5.1. Find a 3 .

Hint: according to the picture, the problem can be solved in 20 seconds... According to the formula, it turns out more difficult. But for mastering the formula, it’s more useful.) In Section 555, this problem is solved using both the picture and the formula. Feel the difference!)

And this is no longer a warm-up.)

2. In arithmetic progression (a n) a 85 =19.1; a 236 =49, 3. Find a 3 .

What, you don’t want to draw a picture?) Of course! Better according to the formula, yes...

3. The arithmetic progression is given by the condition:a 1 = -5.5; a n+1 = a n +0.5. Find the one hundred and twenty-fifth term of this progression.

In this task, the progression is specified in a recurrent manner. But counting to the one hundred and twenty-fifth term... Not everyone is capable of such a feat.) But the formula of the nth term is within the power of everyone!

4. Given an arithmetic progression (a n):

-148; -143,8; -139,6; -135,4, .....

Find the number of the smallest positive term of the progression.

5. According to the conditions of task 4, find the sum of the smallest positive and largest negative terms of the progression.

6. The product of the fifth and twelfth terms of an increasing arithmetic progression is equal to -2.5, and the sum of the third and eleventh terms is equal to zero. Find a 14 .

Not the easiest task, yes...) The “fingertip” method won’t work here. You will have to write formulas and solve equations.

Answers (in disarray):

3,7; 3,5; 2,2; 37; 2,7; 56,5

Happened? It's nice!)

Not everything works out? Happens. By the way, there is one subtle point in the last task. Care will be required when reading the problem. And logic.

The solution to all these problems is discussed in detail in Section 555. And the element of fantasy for the fourth, and the subtle point for the sixth, and general approaches for solving any problems involving the formula of the nth term - everything is described. I recommend.

If you like this site...

By the way, I have a couple more interesting sites for you.)

You can practice solving examples and find out your level. Testing with instant verification. Let's learn - with interest!)

You can get acquainted with functions and derivatives.

Some people treat the word “progression” with caution, as a very complex term from the branches of higher mathematics. Meanwhile, the simplest arithmetic progression is the work of the taxi meter (where they still exist). And understanding the essence (and in mathematics there is nothing more important than “understanding the essence”) of an arithmetic sequence is not so difficult, having analyzed a few elementary concepts.

Mathematical number sequence

A numerical sequence is usually called a series of numbers, each of which has its own number.

a 1 is the first member of the sequence;

and 2 is the second term of the sequence;

and 7 is the seventh member of the sequence;

and n is the nth member of the sequence;

However, not any arbitrary set of numbers and numbers interests us. We will focus our attention on a numerical sequence in which the value of the nth term is related to its ordinal number by a relationship that can be clearly formulated mathematically. In other words: the numerical value of the nth number is some function of n.

a is the value of a member of a numerical sequence;

n is its serial number;

f(n) is a function, where the ordinal number in the numerical sequence n is the argument.

Definition

An arithmetic progression is usually called a numerical sequence in which each subsequent term is greater (less) than the previous one by the same number. The formula for the nth term of an arithmetic sequence is as follows:

a n - the value of the current member of the arithmetic progression;

a n+1 - formula of the next number;

d - difference (certain number).

It is easy to determine that if the difference is positive (d>0), then each subsequent member of the series under consideration will be greater than the previous one and such an arithmetic progression will be increasing.

In the graph below it is easy to see why the number sequence is called “increasing”.

In cases where the difference is negative (d<0), каждый последующий член по понятным причинам будет меньше предыдущего, график прогрессии станет «уходить» вниз, арифметическая прогрессия, соответственно, будет именоваться убывающей.

Specified member value

Sometimes it is necessary to determine the value of any arbitrary term a n of an arithmetic progression. This can be done by sequentially calculating the values ​​of all members of the arithmetic progression, starting from the first to the desired one. However, this path is not always acceptable if, for example, it is necessary to find the value of the five-thousandth or eight-millionth term. Traditional calculations will take a lot of time. However, a specific arithmetic progression can be studied using certain formulas. There is also a formula for the nth term: the value of any term of an arithmetic progression can be determined as the sum of the first term of the progression with the difference of the progression, multiplied by the number of the desired term, reduced by one.

The formula is universal for increasing and decreasing progression.

An example of calculating the value of a given term

Let us solve the following problem of finding the value of the nth term of an arithmetic progression.

Condition: there is an arithmetic progression with parameters:

The first term of the sequence is 3;

The difference in the number series is 1.2.

Task: you need to find the value of 214 terms

Solution: to determine the value of a given term, we use the formula:

a(n) = a1 + d(n-1)

Substituting the data from the problem statement into the expression, we have:

a(214) = a1 + d(n-1)

a(214) = 3 + 1.2 (214-1) = 258.6

Answer: The 214th term of the sequence is equal to 258.6.

The advantages of this method of calculation are obvious - the entire solution takes no more than 2 lines.

Sum of a given number of terms

Very often, in a given arithmetic series, it is necessary to determine the sum of the values ​​of some of its segments. To do this, there is also no need to calculate the values ​​of each term and then add them up. This method is applicable if the number of terms whose sum needs to be found is small. In other cases, it is more convenient to use the following formula.

The sum of the terms of an arithmetic progression from 1 to n is equal to the sum of the first and nth terms, multiplied by the number of the term n and divided by two. If in the formula the value of the nth term is replaced by the expression from the previous paragraph of the article, we get:

Calculation example

For example, let’s solve a problem with the following conditions:

The first term of the sequence is zero;

The difference is 0.5.

The problem requires determining the sum of the terms of the series from 56 to 101.

Solution. Let's use the formula for determining the amount of progression:

s(n) = (2∙a1 + d∙(n-1))∙n/2

First, we determine the sum of the values ​​of 101 terms of the progression by substituting the given conditions of our problem into the formula:

s 101 = (2∙0 + 0.5∙(101-1))∙101/2 = 2,525

Obviously, in order to find out the sum of the terms of the progression from the 56th to the 101st, it is necessary to subtract S 55 from S 101.

s 55 = (2∙0 + 0.5∙(55-1))∙55/2 = 742.5

Thus, the sum of the arithmetic progression for this example is:

s 101 - s 55 = 2,525 - 742.5 = 1,782.5

Example of practical application of arithmetic progression

At the end of the article, let's return to the example of an arithmetic sequence given in the first paragraph - a taximeter (taxi car meter). Let's consider this example.

Boarding a taxi (which includes 3 km of travel) costs 50 rubles. Each subsequent kilometer is paid at the rate of 22 rubles/km. Travel distance is 30 km. Calculate the cost of the trip.

1. Let’s discard the first 3 km, the price of which is included in the cost of landing.

30 - 3 = 27 km.

2. Further calculation is nothing more than parsing an arithmetic number series.

Member number - the number of kilometers traveled (minus the first three).

The value of the member is the sum.

The first term in this problem will be equal to a 1 = 50 rubles.

Progression difference d = 22 r.

the number we are interested in is the value of the (27+1)th term of the arithmetic progression - the meter reading at the end of the 27th kilometer is 27.999... = 28 km.

a 28 = 50 + 22 ∙ (28 - 1) = 644

Calendar data calculations for an arbitrarily long period are based on formulas describing certain numerical sequences. In astronomy, the length of the orbit is geometrically dependent on the distance of the celestial body to the star. In addition, various number series are successfully used in statistics and other applied areas of mathematics.

Another type of number sequence is geometric

Geometric progression is characterized by greater rates of change compared to arithmetic progression. It is no coincidence that in politics, sociology, and medicine, in order to show the high speed of spread of a particular phenomenon, for example, a disease during an epidemic, they say that the process develops in geometric progression.

The Nth term of the geometric number series differs from the previous one in that it is multiplied by some constant number - the denominator, for example, the first term is 1, the denominator is correspondingly equal to 2, then:

n=1: 1 ∙ 2 = 2

n=2: 2 ∙ 2 = 4

n=3: 4 ∙ 2 = 8

n=4: 8 ∙ 2 = 16

n=5: 16 ∙ 2 = 32,

b n - the value of the current term of the geometric progression;

b n+1 - formula of the next term of the geometric progression;

q is the denominator of the geometric progression (a constant number).

If the graph of an arithmetic progression is a straight line, then a geometric progression paints a slightly different picture:

As in the case of arithmetic, geometric progression has a formula for the value of an arbitrary term. Any nth term of a geometric progression is equal to the product of the first term and the denominator of the progression to the power of n reduced by one:

Example. We have a geometric progression with the first term equal to 3 and the denominator of the progression equal to 1.5. Let's find the 5th term of the progression

b 5 = b 1 ∙ q (5-1) = 3 ∙ 1.5 4 = 15.1875

The sum of a given number of terms is also calculated using a special formula. The sum of the first n terms of a geometric progression is equal to the difference between the product of the nth term of the progression and its denominator and the first term of the progression, divided by the denominator reduced by one:

If b n is replaced using the formula discussed above, the value of the sum of the first n terms of the number series under consideration will take the form:

Example. The geometric progression starts with the first term equal to 1. The denominator is set to 3. Let's find the sum of the first eight terms.

s8 = 1 ∙ (3 8 -1) / (3-1) = 3 280


Yes, yes: arithmetic progression is not a toy for you :)

Well, friends, if you are reading this text, then the internal cap-evidence tells me that you do not yet know what an arithmetic progression is, but you really (no, like that: SOOOOO!) want to know. Therefore, I will not torment you with long introductions and will get straight to the point.

First, a couple of examples. Let's look at several sets of numbers:

  • 1; 2; 3; 4; ...
  • 15; 20; 25; 30; ...
  • $\sqrt(2);\ 2\sqrt(2);\ 3\sqrt(2);...$

What do all these sets have in common? At first glance, nothing. But actually there is something. Namely: each next element differs from the previous one by the same number.

Judge for yourself. The first set is simply consecutive numbers, each next being one more than the previous one. In the second case, the difference between adjacent numbers is already five, but this difference is still constant. In the third case, there are roots altogether. However, $2\sqrt(2)=\sqrt(2)+\sqrt(2)$, and $3\sqrt(2)=2\sqrt(2)+\sqrt(2)$, i.e. and in this case, each next element simply increases by $\sqrt(2)$ (and don’t be afraid that this number is irrational).

So: all such sequences are called arithmetic progressions. Let's give a strict definition:

Definition. A sequence of numbers in which each next one differs from the previous one by exactly the same amount is called an arithmetic progression. The very amount by which the numbers differ is called the progression difference and is most often denoted by the letter $d$.

Notation: $\left(((a)_(n)) \right)$ is the progression itself, $d$ is its difference.

And just a couple of important notes. Firstly, progression is only considered ordered sequence of numbers: they are allowed to be read strictly in the order in which they are written - and nothing else. Numbers cannot be rearranged or swapped.

Secondly, the sequence itself can be either finite or infinite. For example, the set (1; 2; 3) is obviously a finite arithmetic progression. But if you write something in the spirit (1; 2; 3; 4; ...) - this is already an infinite progression. The ellipsis after the four seems to hint that there are quite a few more numbers to come. Infinitely many, for example. :)

I would also like to note that progressions can be increasing or decreasing. We have already seen increasing ones - the same set (1; 2; 3; 4; ...). Here are examples of decreasing progressions:

  • 49; 41; 33; 25; 17; ...
  • 17,5; 12; 6,5; 1; −4,5; −10; ...
  • $\sqrt(5);\ \sqrt(5)-1;\ \sqrt(5)-2;\ \sqrt(5)-3;...$

Okay, okay: the last example may seem overly complicated. But the rest, I think, you understand. Therefore, we introduce new definitions:

Definition. An arithmetic progression is called:

  1. increasing if each next element is greater than the previous one;
  2. decreasing if, on the contrary, each subsequent element is less than the previous one.

In addition, there are so-called “stationary” sequences - they consist of the same repeating number. For example, (3; 3; 3; ...).

Only one question remains: how to distinguish an increasing progression from a decreasing one? Fortunately, everything here depends only on the sign of the number $d$, i.e. progression differences:

  1. If $d \gt 0$, then the progression increases;
  2. If $d \lt 0$, then the progression is obviously decreasing;
  3. Finally, there is the case $d=0$ - in this case the entire progression is reduced to a stationary sequence of identical numbers: (1; 1; 1; 1; ...), etc.

Let's try to calculate the difference $d$ for the three decreasing progressions given above. To do this, it is enough to take any two adjacent elements (for example, the first and second) and subtract the number on the left from the number on the right. It will look like this:

  • 41−49=−8;
  • 12−17,5=−5,5;
  • $\sqrt(5)-1-\sqrt(5)=-1$.

As we can see, in all three cases the difference actually turned out to be negative. And now that we have more or less figured out the definitions, it’s time to figure out how progressions are described and what properties they have.

Progression terms and recurrence formula

Since the elements of our sequences cannot be swapped, they can be numbered:

\[\left(((a)_(n)) \right)=\left\( ((a)_(1)),\ ((a)_(2)),((a)_(3 )),... \right\)\]

The individual elements of this set are called members of a progression. They are indicated by a number: first member, second member, etc.

In addition, as we already know, neighboring terms of the progression are related by the formula:

\[((a)_(n))-((a)_(n-1))=d\Rightarrow ((a)_(n))=((a)_(n-1))+d \]

In short, to find the $n$th term of a progression, you need to know the $n-1$th term and the difference $d$. This formula is called recurrent, because with its help you can find any number only by knowing the previous one (and in fact, all the previous ones). This is very inconvenient, so there is a more cunning formula that reduces any calculations to the first term and the difference:

\[((a)_(n))=((a)_(1))+\left(n-1 \right)d\]

You've probably already come across this formula. They like to give it in all sorts of reference books and solution books. And in any sensible mathematics textbook it is one of the first.

However, I suggest you practice a little.

Task No. 1. Write down the first three terms of the arithmetic progression $\left(((a)_(n)) \right)$ if $((a)_(1))=8,d=-5$.

Solution. So, we know the first term $((a)_(1))=8$ and the difference of the progression $d=-5$. Let's use the formula just given and substitute $n=1$, $n=2$ and $n=3$:

\[\begin(align) & ((a)_(n))=((a)_(1))+\left(n-1 \right)d; \\ & ((a)_(1))=((a)_(1))+\left(1-1 \right)d=((a)_(1))=8; \\ & ((a)_(2))=((a)_(1))+\left(2-1 \right)d=((a)_(1))+d=8-5= 3; \\ & ((a)_(3))=((a)_(1))+\left(3-1 \right)d=((a)_(1))+2d=8-10= -2. \\ \end(align)\]

Answer: (8; 3; −2)

That's all! Please note: our progression is decreasing.

Of course, $n=1$ could not be substituted - the first term is already known to us. However, by substituting unity, we were convinced that even for the first term our formula works. In other cases, everything came down to banal arithmetic.

Task No. 2. Write down the first three terms of an arithmetic progression if its seventh term is equal to −40 and its seventeenth term is equal to −50.

Solution. Let's write the problem condition in familiar terms:

\[((a)_(7))=-40;\quad ((a)_(17))=-50.\]

\[\left\( \begin(align) & ((a)_(7))=((a)_(1))+6d \\ & ((a)_(17))=((a) _(1))+16d \\ \end(align) \right.\]

\[\left\( \begin(align) & ((a)_(1))+6d=-40 \\ & ((a)_(1))+16d=-50 \\ \end(align) \right.\]

I put the system sign because these requirements must be met simultaneously. Now let’s note that if we subtract the first from the second equation (we have the right to do this, since we have a system), we get this:

\[\begin(align) & ((a)_(1))+16d-\left(((a)_(1))+6d \right)=-50-\left(-40 \right); \\ & ((a)_(1))+16d-((a)_(1))-6d=-50+40; \\&10d=-10; \\&d=-1. \\ \end(align)\]

That's how easy it is to find the progression difference! All that remains is to substitute the found number into any of the equations of the system. For example, in the first:

\[\begin(matrix) ((a)_(1))+6d=-40;\quad d=-1 \\ \Downarrow \\ ((a)_(1))-6=-40; \\ ((a)_(1))=-40+6=-34. \\ \end(matrix)\]

Now, knowing the first term and the difference, it remains to find the second and third terms:

\[\begin(align) & ((a)_(2))=((a)_(1))+d=-34-1=-35; \\ & ((a)_(3))=((a)_(1))+2d=-34-2=-36. \\ \end(align)\]

Ready! The problem is solved.

Answer: (−34; −35; −36)

Notice the interesting property of progression that we discovered: if we take the $n$th and $m$th terms and subtract them from each other, we get the difference of the progression multiplied by the $n-m$ number:

\[((a)_(n))-((a)_(m))=d\cdot \left(n-m \right)\]

A simple but very useful property that you definitely need to know - with its help you can significantly speed up the solution of many progression problems. Here is a clear example of this:

Task No. 3. The fifth term of an arithmetic progression is 8.4, and its tenth term is 14.4. Find the fifteenth term of this progression.

Solution. Since $((a)_(5))=8.4$, $((a)_(10))=14.4$, and we need to find $((a)_(15))$, we note following:

\[\begin(align) & ((a)_(15))-((a)_(10))=5d; \\ & ((a)_(10))-((a)_(5))=5d. \\ \end(align)\]

But by condition $((a)_(10))-((a)_(5))=14.4-8.4=6$, therefore $5d=6$, from which we have:

\[\begin(align) & ((a)_(15))-14,4=6; \\ & ((a)_(15))=6+14.4=20.4. \\ \end(align)\]

Answer: 20.4

That's all! We didn’t need to create any systems of equations and calculate the first term and the difference - everything was solved in just a couple of lines.

Now let's look at another type of problem - searching for negative and positive terms of a progression. It is no secret that if a progression increases, and its first term is negative, then sooner or later positive terms will appear in it. And vice versa: the terms of a decreasing progression will sooner or later become negative.

At the same time, it is not always possible to find this moment “head-on” by sequentially going through the elements. Often, problems are written in such a way that without knowing the formulas, the calculations would take several sheets of paper—we would simply fall asleep while we found the answer. Therefore, let's try to solve these problems in a faster way.

Task No. 4. How many negative terms are there in the arithmetic progression −38.5; −35.8; ...?

Solution. So, $((a)_(1))=-38.5$, $((a)_(2))=-35.8$, from where we immediately find the difference:

Note that the difference is positive, so the progression increases. The first term is negative, so indeed at some point we will stumble upon positive numbers. The only question is when this will happen.

Let's try to find out how long (i.e. up to what natural number $n$) the negativity of the terms remains:

\[\begin(align) & ((a)_(n)) \lt 0\Rightarrow ((a)_(1))+\left(n-1 \right)d \lt 0; \\ & -38.5+\left(n-1 \right)\cdot 2.7 \lt 0;\quad \left| \cdot 10 \right. \\ & -385+27\cdot \left(n-1 \right) \lt 0; \\ & -385+27n-27 \lt 0; \\ & 27n \lt 412; \\ & n \lt 15\frac(7)(27)\Rightarrow ((n)_(\max ))=15. \\ \end(align)\]

The last line requires some explanation. So we know that $n \lt 15\frac(7)(27)$. On the other hand, we are satisfied with only integer values ​​of the number (moreover: $n\in \mathbb(N)$), so the largest permissible number is precisely $n=15$, and in no case 16.

Task No. 5. In arithmetic progression $(()_(5))=-150,(()_(6))=-147$. Find the number of the first positive term of this progression.

This would be exactly the same problem as the previous one, but we do not know $((a)_(1))$. But the neighboring terms are known: $((a)_(5))$ and $((a)_(6))$, so we can easily find the difference of the progression:

In addition, let's try to express the fifth term through the first and the difference using the standard formula:

\[\begin(align) & ((a)_(n))=((a)_(1))+\left(n-1 \right)\cdot d; \\ & ((a)_(5))=((a)_(1))+4d; \\ & -150=((a)_(1))+4\cdot 3; \\ & ((a)_(1))=-150-12=-162. \\ \end(align)\]

Now we proceed by analogy with the previous task. Let's find out at what point in our sequence positive numbers will appear:

\[\begin(align) & ((a)_(n))=-162+\left(n-1 \right)\cdot 3 \gt 0; \\ & -162+3n-3 \gt 0; \\ & 3n \gt 165; \\ & n \gt 55\Rightarrow ((n)_(\min ))=56. \\ \end(align)\]

The minimum integer solution to this inequality is the number 56.

Please note: in the last task everything came down to strict inequality, so the option $n=55$ will not suit us.

Now that we have learned how to solve simple problems, let's move on to more complex ones. But first, let's study another very useful property of arithmetic progressions, which will save us a lot of time and unequal cells in the future. :)

Arithmetic mean and equal indentations

Let's consider several consecutive terms of the increasing arithmetic progression $\left(((a)_(n)) \right)$. Let's try to mark them on the number line:

Terms of an arithmetic progression on the number line

I specifically marked arbitrary terms $((a)_(n-3)),...,((a)_(n+3))$, and not some $((a)_(1)) ,\ ((a)_(2)),\ ((a)_(3))$, etc. Because the rule that I’ll tell you about now works the same for any “segments”.

And the rule is very simple. Let's remember the recurrent formula and write it down for all marked terms:

\[\begin(align) & ((a)_(n-2))=((a)_(n-3))+d; \\ & ((a)_(n-1))=((a)_(n-2))+d; \\ & ((a)_(n))=((a)_(n-1))+d; \\ & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n+1))+d; \\ \end(align)\]

However, these equalities can be rewritten differently:

\[\begin(align) & ((a)_(n-1))=((a)_(n))-d; \\ & ((a)_(n-2))=((a)_(n))-2d; \\ & ((a)_(n-3))=((a)_(n))-3d; \\ & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n))+2d; \\ & ((a)_(n+3))=((a)_(n))+3d; \\ \end(align)\]

Well, so what? And the fact that the terms $((a)_(n-1))$ and $((a)_(n+1))$ lie at the same distance from $((a)_(n)) $. And this distance is equal to $d$. The same can be said about the terms $((a)_(n-2))$ and $((a)_(n+2))$ - they are also removed from $((a)_(n))$ at the same distance equal to $2d$. We can continue ad infinitum, but the meaning is well illustrated by the picture


The terms of the progression lie at the same distance from the center

What does this mean for us? This means that $((a)_(n))$ can be found if the neighboring numbers are known:

\[((a)_(n))=\frac(((a)_(n-1))+((a)_(n+1)))(2)\]

We have derived an excellent statement: every term of an arithmetic progression is equal to the arithmetic mean of its neighboring terms! Moreover: we can step back from our $((a)_(n))$ to the left and to the right not by one step, but by $k$ steps - and the formula will still be correct:

\[((a)_(n))=\frac(((a)_(n-k))+((a)_(n+k)))(2)\]

Those. we can easily find some $((a)_(150))$ if we know $((a)_(100))$ and $((a)_(200))$, because $(( a)_(150))=\frac(((a)_(100))+((a)_(200)))(2)$. At first glance, it may seem that this fact does not give us anything useful. However, in practice, many problems are specially tailored to use the arithmetic mean. Take a look:

Task No. 6. Find all values ​​of $x$ for which the numbers $-6((x)^(2))$, $x+1$ and $14+4((x)^(2))$ are consecutive terms of an arithmetic progression (in in the order indicated).

Solution. Since these numbers are members of a progression, the arithmetic mean condition is satisfied for them: the central element $x+1$ can be expressed in terms of neighboring elements:

\[\begin(align) & x+1=\frac(-6((x)^(2))+14+4((x)^(2)))(2); \\ & x+1=\frac(14-2((x)^(2)))(2); \\ & x+1=7-((x)^(2)); \\ & ((x)^(2))+x-6=0. \\ \end(align)\]

The result is a classic quadratic equation. Its roots: $x=2$ and $x=-3$ are the answers.

Answer: −3; 2.

Task No. 7. Find the values ​​of $$ for which the numbers $-1;4-3;(()^(2))+1$ form an arithmetic progression (in that order).

Solution. Let us again express the middle term through the arithmetic mean of neighboring terms:

\[\begin(align) & 4x-3=\frac(x-1+((x)^(2))+1)(2); \\ & 4x-3=\frac(((x)^(2))+x)(2);\quad \left| \cdot 2 \right.; \\ & 8x-6=((x)^(2))+x; \\ & ((x)^(2))-7x+6=0. \\ \end(align)\]

Quadratic equation again. And again there are two roots: $x=6$ and $x=1$.

Answer: 1; 6.

If in the process of solving a problem you come up with some brutal numbers, or you are not entirely sure of the correctness of the answers found, then there is a wonderful technique that allows you to check: have we solved the problem correctly?

Let's say in problem No. 6 we received answers −3 and 2. How can we check that these answers are correct? Let's just plug them into the original condition and see what happens. Let me remind you that we have three numbers ($-6(()^(2))$, $+1$ and $14+4(()^(2))$), which must form an arithmetic progression. Let's substitute $x=-3$:

\[\begin(align) & x=-3\Rightarrow \\ & -6((x)^(2))=-54; \\ & x+1=-2; \\ & 14+4((x)^(2))=50. \end(align)\]

We got the numbers −54; −2; 50 that differ by 52 is undoubtedly an arithmetic progression. The same thing happens for $x=2$:

\[\begin(align) & x=2\Rightarrow \\ & -6((x)^(2))=-24; \\ & x+1=3; \\ & 14+4((x)^(2))=30. \end(align)\]

Again a progression, but with a difference of 27. Thus, the problem was solved correctly. Those who wish can check the second problem on their own, but I’ll say right away: everything is correct there too.

In general, while solving the last problems, we came across another interesting fact that also needs to be remembered:

If three numbers are such that the second is the arithmetic mean of the first and last, then these numbers form an arithmetic progression.

In the future, understanding this statement will allow us to literally “construct” the necessary progressions based on the conditions of the problem. But before we engage in such “construction”, we should pay attention to one more fact, which directly follows from what has already been discussed.

Grouping and summing elements

Let's return to the number axis again. Let us note there several members of the progression, between which, perhaps. is worth a lot of other members:

There are 6 elements marked on the number line

Let's try to express the “left tail” through $((a)_(n))$ and $d$, and the “right tail” through $((a)_(k))$ and $d$. It's very simple:

\[\begin(align) & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n))+2d; \\ & ((a)_(k-1))=((a)_(k))-d; \\ & ((a)_(k-2))=((a)_(k))-2d. \\ \end(align)\]

Now note that the following amounts are equal:

\[\begin(align) & ((a)_(n))+((a)_(k))=S; \\ & ((a)_(n+1))+((a)_(k-1))=((a)_(n))+d+((a)_(k))-d= S; \\ & ((a)_(n+2))+((a)_(k-2))=((a)_(n))+2d+((a)_(k))-2d= S. \end(align)\]

Simply put, if we consider as a start two elements of the progression, which in total are equal to some number $S$, and then begin to step from these elements in opposite directions (toward each other or vice versa to move away), then the sums of the elements that we will stumble upon will also be equal$S$. This can be most clearly represented graphically:


Equal indentations give equal amounts

Understanding this fact will allow us to solve problems of a fundamentally higher level of complexity than those we considered above. For example, these:

Task No. 8. Determine the difference of an arithmetic progression in which the first term is 66, and the product of the second and twelfth terms is the smallest possible.

Solution. Let's write down everything we know:

\[\begin(align) & ((a)_(1))=66; \\&d=? \\ & ((a)_(2))\cdot ((a)_(12))=\min . \end(align)\]

So, we do not know the progression difference $d$. Actually, the entire solution will be built around the difference, since the product $((a)_(2))\cdot ((a)_(12))$ can be rewritten as follows:

\[\begin(align) & ((a)_(2))=((a)_(1))+d=66+d; \\ & ((a)_(12))=((a)_(1))+11d=66+11d; \\ & ((a)_(2))\cdot ((a)_(12))=\left(66+d \right)\cdot \left(66+11d \right)= \\ & =11 \cdot \left(d+66 \right)\cdot \left(d+6 \right). \end(align)\]

For those in the tank: I took the total multiplier of 11 out of the second bracket. Thus, the desired product is a quadratic function with respect to the variable $d$. Therefore, consider the function $f\left(d \right)=11\left(d+66 \right)\left(d+6 \right)$ - its graph will be a parabola with branches up, because if we expand the brackets, we get:

\[\begin(align) & f\left(d \right)=11\left(((d)^(2))+66d+6d+66\cdot 6 \right)= \\ & =11(( d)^(2))+11\cdot 72d+11\cdot 66\cdot 6 \end(align)\]

As you can see, the coefficient of the highest term is 11 - this is a positive number, so we are really dealing with a parabola with upward branches:


graph of a quadratic function - parabola

Please note: this parabola takes its minimum value at its vertex with the abscissa $((d)_(0))$. Of course, we can calculate this abscissa using the standard scheme (there is the formula $((d)_(0))=(-b)/(2a)\;$), but it would be much more reasonable to note that the desired vertex lies on the axis symmetry of the parabola, therefore the point $((d)_(0))$ is equidistant from the roots of the equation $f\left(d \right)=0$:

\[\begin(align) & f\left(d \right)=0; \\ & 11\cdot \left(d+66 \right)\cdot \left(d+6 \right)=0; \\ & ((d)_(1))=-66;\quad ((d)_(2))=-6. \\ \end(align)\]

That is why I was in no particular hurry to open the brackets: in their original form, the roots were very, very easy to find. Therefore, the abscissa is equal to the arithmetic mean of the numbers −66 and −6:

\[((d)_(0))=\frac(-66-6)(2)=-36\]

What does the discovered number give us? With it, the required product takes on the smallest value (by the way, we never calculated $((y)_(\min ))$ - this is not required of us). At the same time, this number is the difference of the original progression, i.e. we found the answer. :)

Answer: −36

Task No. 9. Between the numbers $-\frac(1)(2)$ and $-\frac(1)(6)$ insert three numbers so that together with these numbers they form an arithmetic progression.

Solution. Essentially, we need to make a sequence of five numbers, with the first and last number already known. Let's denote the missing numbers by the variables $x$, $y$ and $z$:

\[\left(((a)_(n)) \right)=\left\( -\frac(1)(2);x;y;z;-\frac(1)(6) \right\ )\]

Note that the number $y$ is the “middle” of our sequence - it is equidistant from the numbers $x$ and $z$, and from the numbers $-\frac(1)(2)$ and $-\frac(1)( 6)$. And if we currently cannot obtain $y$ from the numbers $x$ and $z$, then the situation is different with the ends of the progression. Let's remember the arithmetic mean:

Now, knowing $y$, we will find the remaining numbers. Note that $x$ lies between the numbers $-\frac(1)(2)$ and the $y=-\frac(1)(3)$ we just found. That's why

Using similar reasoning, we find the remaining number:

Ready! We found all three numbers. Let's write them in the answer in the order in which they should be inserted between the original numbers.

Answer: $-\frac(5)(12);\ -\frac(1)(3);\ -\frac(1)(4)$

Task No. 10. Between the numbers 2 and 42, insert several numbers that, together with these numbers, form an arithmetic progression, if you know that the sum of the first, second and last of the inserted numbers is 56.

Solution. An even more complex problem, which, however, is solved according to the same scheme as the previous ones - through the arithmetic mean. The problem is that we don’t know exactly how many numbers need to be inserted. Therefore, let us assume for definiteness that after inserting everything there will be exactly $n$ numbers, and the first of them is 2, and the last is 42. In this case, the required arithmetic progression can be represented in the form:

\[\left(((a)_(n)) \right)=\left\( 2;((a)_(2));((a)_(3));...;(( a)_(n-1));42 \right\)\]

\[((a)_(2))+((a)_(3))+((a)_(n-1))=56\]

Note, however, that the numbers $((a)_(2))$ and $((a)_(n-1))$ are obtained from the numbers 2 and 42 at the edges by one step towards each other, i.e. . to the center of the sequence. And this means that

\[((a)_(2))+((a)_(n-1))=2+42=44\]

But then the expression written above can be rewritten as follows:

\[\begin(align) & ((a)_(2))+((a)_(3))+((a)_(n-1))=56; \\ & \left(((a)_(2))+((a)_(n-1)) \right)+((a)_(3))=56; \\ & 44+((a)_(3))=56; \\ & ((a)_(3))=56-44=12. \\ \end(align)\]

Knowing $((a)_(3))$ and $((a)_(1))$, we can easily find the difference of the progression:

\[\begin(align) & ((a)_(3))-((a)_(1))=12-2=10; \\ & ((a)_(3))-((a)_(1))=\left(3-1 \right)\cdot d=2d; \\ & 2d=10\Rightarrow d=5. \\ \end(align)\]

All that remains is to find the remaining terms:

\[\begin(align) & ((a)_(1))=2; \\ & ((a)_(2))=2+5=7; \\ & ((a)_(3))=12; \\ & ((a)_(4))=2+3\cdot 5=17; \\ & ((a)_(5))=2+4\cdot 5=22; \\ & ((a)_(6))=2+5\cdot 5=27; \\ & ((a)_(7))=2+6\cdot 5=32; \\ & ((a)_(8))=2+7\cdot 5=37; \\ & ((a)_(9))=2+8\cdot 5=42; \\ \end(align)\]

Thus, already at the 9th step we will arrive at the left end of the sequence - the number 42. In total, only 7 numbers had to be inserted: 7; 12; 17; 22; 27; 32; 37.

Answer: 7; 12; 17; 22; 27; 32; 37

Word problems with progressions

In conclusion, I would like to consider a couple of relatively simple problems. Well, as simple as that: for most students who study mathematics at school and have not read what is written above, these problems may seem tough. Nevertheless, these are the types of problems that appear in the OGE and the Unified State Exam in mathematics, so I recommend that you familiarize yourself with them.

Task No. 11. The team produced 62 parts in January, and in each subsequent month they produced 14 more parts than in the previous month. How many parts did the team produce in November?

Solution. Obviously, the number of parts listed by month will represent an increasing arithmetic progression. Moreover:

\[\begin(align) & ((a)_(1))=62;\quad d=14; \\ & ((a)_(n))=62+\left(n-1 \right)\cdot 14. \\ \end(align)\]

November is the 11th month of the year, so we need to find $((a)_(11))$:

\[((a)_(11))=62+10\cdot 14=202\]

Therefore, 202 parts will be produced in November.

Task No. 12. The bookbinding workshop bound 216 books in January, and in each subsequent month it bound 4 more books than in the previous month. How many books did the workshop bind in December?

Solution. All the same:

$\begin(align) & ((a)_(1))=216;\quad d=4; \\ & ((a)_(n))=216+\left(n-1 \right)\cdot 4. \\ \end(align)$

December is the last, 12th month of the year, so we are looking for $((a)_(12))$:

\[((a)_(12))=216+11\cdot 4=260\]

This is the answer - 260 books will be bound in December.

Well, if you have read this far, I hasten to congratulate you: you have successfully completed the “young fighter’s course” in arithmetic progressions. You can safely move on to the next lesson, where we will study the formula for the sum of progression, as well as important and very useful consequences from it.

Similar articles

2024 my-cross.ru. Cats and dogs. Small animals. Health. Medicine.