How much electricity do household appliances consume? What is Ampere

On household appliances (mixer, hair dryer, blender), manufacturers write the power consumption in watts, on devices that require large amounts of electrical load (electric stove, vacuum cleaner, water heater), in kilowatts. And on sockets or circuit breakers through which devices are connected to the network, it is customary to indicate the current strength in amperes. To understand whether the outlet will support the device you are connecting, you need to know how to convert amps to watts.

Power units

Converting watts to amperes and vice versa is a relative concept, because these are different units of measurement. Amps are physical quantity strength electric current, that is, the speed at which electricity passes through the cable. Watt is the amount of electrical power, or the rate of electricity consumption. But such a translation is necessary in order to calculate whether the value of the current corresponds to the value of its power.

Converting amperes to watts and kilowatts

Knowing how to calculate the correspondence between amperes and watts is necessary in order to determine which device can withstand the power of connected consumers. Such devices include protective equipment or switching equipment.

Before choosing which circuit breaker or residual current device (RCD) to install, you need to calculate the power consumption of all connected devices (iron, lamps, washing machine, computer, etc.). Or, on the contrary, knowing the cost of a circuit breaker or protective shutdown device, determine which equipment will withstand the load and which will not.

To convert amperes to kilowatts and vice versa, there is a formula: I=P/U, where I are amperes, P are watts, U are volts. Volts are the mains voltage. In residential premises, a single-phase network is used - 220 V. In production, to connect industrial equipment, a three-phase electrical network is used, the value of which is 380 V. Based on this formula, knowing the amperes, you can calculate the correspondence to watts and vice versa - convert watts to amperes.

Situation: There is a circuit breaker. Technical parameters: rated current 25 A, 1-pole. You need to calculate what wattage of devices the machine can withstand.

The easiest way is to enter technical data into a calculator and calculate the power. You can also use the formula I=P/U, it will turn out: 25 A=x W/220 V.

x W=5500 W.

To convert watts to kilowatts, you need to know the following measures of power in watts:

  • 1000 W = 1 kW,
  • 1000 000 W = 1000 kW = MW,
  • 1000,000,000 W = 1,000 MW = 1,000,000 kW, etc.

This means 5500 W = 5.5 kW. Answer: a machine with a rated current of 25 A can withstand the load of all devices with a total power of 5.5 kW, no more.

Apply a formula with voltage and current data in order to select the type of cable based on power and current. The table shows the current correspondence to the wire cross-section:

Copper conductors of wires and cables
Core cross-section, mm²Copper conductors of wires, cables
Voltage 220 VVoltage 380 V
Current, Apower, kWtCurrent, Apower, kWt
1,5 19 4,1 16 10,5
2,5 27 5,9 25 16,5
4 38 8,3 30 19,8
6 46 10,1 40 26,4
10 70 15,4 50 33
16 85 18,7 75 49,5
25 115 25,3 90 59,4
35 135 29,7 115 75,9
50 175 38,5 145 95,7
70 215 47,3 180 118,8
95 260 57,2 220 145,2
120 300 66 260 171,6

How to convert watt to ampere

You need to convert watts to amperes in a situation where you need to install a protective device and you need to choose what rated current it should have. It is clear from the operating instructions how many watts a household appliance connected to a single-phase network consumes.

The task is to calculate how many amperes in watts or what kind of socket to connect to if the microwave oven consumes 1.5 kW. For ease of calculation, it is better to convert kilowatts into watts: 1.5 kW = 1500W. We substitute the values ​​into the formula and get: 1500W / 220V = 6.81 A. We round the values ​​up and get 1500 W in terms of amperes - microwave current consumption is at least 7 A.

If you connect several devices simultaneously to one protection device, then in order to calculate how many amperes there are in watts, you need to add all the consumption values ​​together. For example, the room uses lighting with 10 pcs LED lamps. 6W, iron 2kW and TV 30W. First, all indicators need to be converted into watts, it turns out:

  • lamps 6*10= 60 W,
  • iron 2 kW=2000 W,
  • TV 30 W.

60+2000+30=2090 W.

Now you can convert amperes to watts; to do this, substitute the values ​​into the formula 2090/220 V = 9.5 A ~ 10A. Answer: current consumption is about 10A.

You need to know how to convert amps to watts without a calculator. The table shows the correspondence between the rate of electricity consumption and the current strength for single-phase and three-phase networks.

Ampere (A)Power, kWt)
220 V380 V
2 0,4 1,3
6 1,3 3,9
10 2,2 6,6
16 3,5 10,5
20 4,4 13,2
25 5,5 16,4
32 7,0 21,1
40 8,8 26,3
50 11,0 32,9
63 13,9 41,4

When designing electrical systems, it is necessary to competently operate with quantities such as Amperes, Watts and Volts. In addition, you need to be able to correctly calculate their ratio when loading a particular mechanism. Yes, of course, there are systems in which the voltage is fixed, for example, a home network. However, we must not forget that current strength and power are still different concepts, so you need to know exactly how many watts 1 Ampere contains.

Is there a difference between Volts and Watts?

First, let's remember what these concepts mean. Let’s also try to find out if there is a significant difference between them.

So, an electrical voltage that produces a current whose strength is equal to 1 Ampere is called a Volt. It is worth noting that it “works” in a conductor with a resistance of 1 ohm.

Volts can be divided:

  • 1,000,000 microvolts
  • 1,000 millivolts

At the same time, we can say that Watt is the constant power of electric current. At a voltage of 1 Volt, its power is 1 Ampere.

Based on the above, we can safely say that there is still a difference between these concepts. Therefore, it must be taken into account when working with various electrical systems.

What is Ampere?

Next, let's try to understand this concept. First of all, it is worth noting that Ampere (A) is the current strength that is considered constant. However, her distinctive feature is that after interacting with a solution of acid-nitrogen silver, it deposits 0.00111800 g of silver every second.

There is a generally accepted division according to which 1 A contains:

  1. 1,000,000 microamps
  2. 1,000 milliamps

How many volts does 1 ampere contain?

It is quite difficult to answer this question. However, to make it easier for you to understand this issue, we suggest that you familiarize yourself with the tables of ratios:

For DC:

For alternating current:

What are Volt Amperes and how to convert them to Watts?

Another unit of power used in SI is the Volt-Ampere (VA). It is equal to the product of such effective values ​​as current and voltage.

Additionally, it is worth noting that, as a rule, VAs are used solely to estimate the power in AC connections. That is, in cases where Watt and Volt-Ampere have different meanings.

There are now many different online calculators that allow you to quickly and easily convert VA to Watts. This procedure is so simple that we will not dwell on it.

But, especially for those people who do not have an online calculator at hand to convert Volt-Amps to Watts, we consider the translation process these quantities in more detail:

Using this formula we can find out the current strength. Of course, only if we already voltage and power are known.

That is, it turns out that to convert Watts to Amperes, we must find out the voltage in the system. For example, in the USA the voltage in the electrical network is 120V, and in Russia it is 220V.

It is worth noting that batteries used in cars usually have a voltage of 12 V. And the voltage in small batteries used for various portable devices, as a rule, does not exceed 1.5 V.

Thus, we can say that knowing the voltage and power, we can easily find out the current strength as well. To do this we only need the right use the above formula.

Let's look at how this "works" on specific example: if the voltage is 220V and the power is 220W, then the current will be 220/220 or 1 A.

How many watts are in 1 ampere?

Now let's try to convert Watts to Amps. And for this we need one more formula:

In it, I is A, P is Watt, and U is Volt.

By making a simple calculation using this formula, we can find out how many Watts are in one A.

As we said earlier, there is another way to calculate how many watts are in 1 A. In order to use it you will need open online calculator and enter the power consumption as well as the voltage into it.

Next, you just need to click on the button labeled “calculate” and within a couple of seconds special program will give you the correct value. By using this method, you will undoubtedly be able to save your time and effort, since you do not have to independently calculate all the indicators using formulas.

Length and distance converter Mass converter Bulk and food volume converter Area converter Volume and units converter in culinary recipes Temperature converter Pressure, mechanical stress, Young's modulus converter Energy and work converter Power converter Force converter Time converter Linear speed converter Flat angle Thermal efficiency and fuel efficiency converter Number converter in different number systems Converter of units of measurement of quantity of information Exchange rates Dimensions women's clothing and Shoe Sizes men's clothing and shoes Angular velocity and rotational speed converter Acceleration converter Angular acceleration converter Density converter Specific volume converter Moment of inertia converter Moment of force converter Torque converter Specific heat of combustion converter (by mass) Energy density and specific heat of combustion converter of fuel (by volume) Temperature difference converter Coefficient of Thermal Expansion Converter Thermal Resistance Converter Thermal Conductivity Converter Specific Heat Capacity Converter Energy Exposure and Thermal Radiation Power Converter Heat Flux Density Converter Heat Transfer Coefficient Converter Volume Flow Converter Converter mass flow Molar flow rate converter Mass flow density converter Molar concentration converter Mass concentration in solution converter Dynamic (absolute) viscosity converter Kinematic viscosity converter Surface tension converter Vapor permeability converter Water vapor flow density converter Sound level converter Microphone sensitivity converter Sound pressure level (SPL) converter Sound level converter pressure with selectable reference pressure Brightness converter Luminous intensity converter Illuminance converter Computer graphics resolution converter Frequency and wavelength converter Diopter power and focal length Diopter power and lens magnification (×) Electric charge converter Linear charge density converter Surface density converter Charge Volume Charge Density Converter Electric Current Converter Linear Current Density Converter Surface Current Density Converter Electric Field Strength Converter Electrostatic Potential and Voltage Converter Electrical Resistance Converter Electrical Resistivity Converter Electrical Conductivity Converter Electrical Conductivity Converter Electrical Capacitance Inductance Converter American Wire Gauge Converter Levels in dBm (dBm or dBmW), dBV (dBV), watts and other units Magnetomotive force converter Voltage converter magnetic field Converter magnetic flux Magnetic induction converter Radiation. Ionizing radiation absorbed dose rate converter Radioactivity. Radioactive decay converter Radiation. Exposure dose converter Radiation. Absorbed Dose Converter Decimal Prefix Converter Data Transfer Typography and Image Processing Units Converter Timber Volume Units Converter Calculation molar mass Periodic table chemical elements D. I. Mendeleev

1 watt [W] = 0.001 kilowatt [kW]

Initial value

Converted value

watt exawatt petawatt terawatt gigawatt megawatt kilowatt hectowatt decawatt deciwatt centiwatt milliwatt microwatt nanowatt picowatt femtowatt attowatt horsepower horsepower metric horsepower boiler horsepower electric horsepower pump horsepower horsepower (German) Brit. thermal unit (int.) per British hour. thermal unit (int.) per minute brit. thermal unit (int.) per second brit. thermal unit (thermochemical) per hour Brit. thermal unit (thermochemical) per minute brit. thermal unit (thermochemical) per second MBTU (international) per hour Thousand BTU per hour MMBTU (international) per hour Million BTU per hour refrigeration ton kilocalorie (IT) per hour kilocalorie (IT) per minute kilocalorie (IT) per minute second kilocalorie (therm.) per hour kilocalorie (therm.) per minute kilocalorie (therm.) per second calorie (interm.) per hour calorie (interm.) per minute calorie (interm.) per second calorie (therm.) per hour calorie (therm) per minute calorie (therm) per second ft lbf per hour ft lbf/minute ft lbf/second lb-ft per hour lb-ft per minute lb-ft per second erg per second kilovolt-ampere volt-ampere newton meter per second joule per second exajoule per second petajoule per second terajoule per second gigajoule per second megajoule per second kilojoule per second hectojoule per second decajoule per second decijoule per second centijoule per second millijoule per second microjoule per second nanojoule per second picojoule per second femtojoule per second attojoule per second joule per hour joule per minute kilojoule per hour kilojoule per minute Planck power

More about power

General information

In physics, power is the ratio of work to the time during which it is performed. Mechanical work is a quantitative characteristic of the action of force F on a body, as a result of which it moves a distance s. Power can also be defined as the rate at which energy is transferred. In other words, power is an indicator of the machine's performance. By measuring power, you can understand how much work is done and at what speed.

Power units

Power is measured in joules per second, or watts. Along with watts, horsepower is also used. Before the invention of the steam engine, the power of engines was not measured, and, accordingly, there were no generally accepted units of power. When the steam engine began to be used in mines, engineer and inventor James Watt began improving it. To prove that his improvements made the steam engine more efficient, he compared its power to the performance of horses, since horses have been used by people for centuries. for long years, and many could easily imagine how much work a horse could do in a certain amount of time. In addition, not all mines used steam engines. On those where they were used, Watt compared the power of the old and new models of the steam engine with the power of one horse, that is, with one horsepower. Watt determined this value experimentally by observing the work of draft horses at a mill. According to his measurements, one horsepower is 746 watts. Now it is believed that this figure is exaggerated, and the horse cannot work in this mode for a long time, but they did not change the unit. Power can be used as a measure of productivity because as power increases, the amount of work done per unit of time increases. Many people realized that it was convenient to have a standardized unit of power, so horsepower became very popular. It began to be used in measuring the power of other devices, especially vehicles. Although watts have been around for almost as long as horsepower, horsepower is more commonly used in the automotive industry, and many consumers are more familiar with horsepower when it comes to power ratings for a car engine.

Power of household electrical appliances

Household electrical appliances usually have a wattage rating. Some fixtures limit the wattage of the bulbs they can use, such as no more than 60 watts. This is done because higher wattage lamps generate a lot of heat and the lamp socket may be damaged. And the lamp itself high temperature It will not last long in the lamp. This is mainly a problem with incandescent lamps. LED, fluorescent and other lamps typically operate at lower wattages for the same brightness and, if used in fixtures designed for incandescent bulbs, wattage is not an issue.

The greater the power of an electrical appliance, the higher the energy consumption and the cost of using the device. Therefore, manufacturers are constantly improving electrical appliances and lamps. The luminous flux of lamps, measured in lumens, depends on the power, but also on the type of lamp. The greater the luminous flux of a lamp, the brighter its light appears. For people, it is the high brightness that is important, and not the power consumed by the llama, so in Lately Alternatives to incandescent lamps are becoming increasingly popular. Below are examples of types of lamps, their power and the luminous flux they create.

  • 450 lumens:
    • Incandescent: 40 watt
    • Compact Fluorescent Lamp: 9–13 watts
    • LED lamp: 4–9 watts
  • 800 lumens:
    • Incandescent: 60 watt
    • CFL: 13–15 watts
    • LED lamp: 10–15 watts
  • 1600 lumens:
    • Incandescent: 100 watt
    • CFL: 23–30 watts
    • LED lamp: 16–20 watts

    From these examples it is obvious that with the same luminous flux created, LED lamps consume the least amount of electricity and are more economical compared to incandescent lamps. At the time of writing this article (2013), the price LED lamps many times higher than the price of incandescent lamps. Despite this, some countries have banned or are planning to ban the sale of incandescent lamps due to their high power.

    The power of household electrical appliances may vary depending on the manufacturer, and is not always the same during operation of the appliance. Below are the approximate wattages of some household appliances.

    • Household air conditioners for cooling a residential building, split system: 20–40 kilowatts
    • Monoblock window air conditioners: 1–2 kilowatts
    • Ovens: 2.1–3.6 kilowatts
    • Washers and dryers: 2–3.5 kilowatts
    • Dishwashers: 1.8–2.3 kilowatts
    • Electric kettles: 1–2 kilowatts
    • Microwave ovens: 0.65–1.2 kilowatts
    • Refrigerators: 0.25–1 kilowatt
    • Toasters: 0.7–0.9 kilowatts

    Power in sports

    Performance can be assessed using power not only for machines, but also for people and animals. For example, the power with which a basketball player throws a ball is calculated by measuring the force she applies to the ball, the distance the ball travels, and the time over which that force is applied. There are websites that allow you to calculate work and power during physical exercise. The user selects the type of exercise, enters height, weight, duration of exercise, after which the program calculates the power. For example, according to one of these calculators, the power of a person 170 centimeters tall and weighing 70 kilograms, who did 50 push-ups in 10 minutes, is 39.5 watts. Athletes sometimes use devices to measure the power at which muscles work during exercise. This information helps determine how effective their chosen exercise program is.

    Dynamometers

    To measure power, special devices are used - dynamometers. They can also measure torque and force. Dynamometers are used in various industries, from technology to medicine. For example, they can be used to determine the power of a car engine. There are several main types of dynamometers used to measure vehicle power. In order to determine engine power using dynamometers alone, it is necessary to remove the engine from the car and attach it to the dynamometer. In other dynamometers, the force for measurement is transmitted directly from the car wheel. In this case, the car's engine through the transmission drives the wheels, which, in turn, rotate the rollers of the dynamometer, which measures engine power under various road conditions.

    Dynamometers are also used in sports and medicine. The most common type of dynamometer for these purposes is isokinetic. Typically this is a sports trainer with sensors connected to a computer. These sensors measure strength and power of the entire body or specific muscle groups. The dynamometer can be programmed to issue signals and warnings if the power exceeds a certain value. This is especially important for people with injuries during the rehabilitation period, when it is necessary not to overload the body.

    According to some provisions of the theory of sports, the greatest sports development occurs under a certain load, individual for each athlete. If the load is not heavy enough, the athlete gets used to it and does not develop his abilities. If, on the contrary, it is too heavy, then the results deteriorate due to overload of the body. Exercise stress during some exercises such as cycling or swimming depends on many factors environment such as road conditions or wind. Such a load is difficult to measure, but you can find out with what power the body counteracts this load, and then change the exercise regimen, depending on the desired load.

Do you find it difficult to translate units of measurement from one language to another? Colleagues are ready to help you. Post a question in TCTerms and within a few minutes you will receive an answer.

Electrical systems often require complex analysis when designing, because you need to deal with many different quantities, watts, volts, amperes, etc. In this case, it is precisely necessary to calculate their ratio at a certain load on the mechanism. In some systems, the voltage is fixed, for example, in a home network, but power and current mean different concepts, although they are interchangeable quantities.

Online calculator for calculating watts to amperes

To obtain the result, be sure to indicate the voltage and power consumption.

In such cases, it is very important to have an assistant in order to accurately convert the wattage into amperes at a constant voltage value.

An online calculator will help us convert amperes to watts. Before using an online program to calculate values, you need to have an idea of ​​the meaning of the required data.

  1. Power is the rate at which energy is consumed. For example, a 100 W light bulb uses energy - 100 joules per second.
  2. Ampere is a measurement of electric current, determined in coulombs and shows the number of electrons that passed through a certain cross-section of a conductor in a specified time.
  3. The voltage of an electric current is measured in volts.

To convert watts to amperes, the calculator is used very simply, the user must enter the voltage indicator (V) in the indicated columns, then the power consumption of the unit (W) and click the calculate button. After a few seconds, the program will show the exact result of the current in amperes. Formula for how many watts in ampere

Attention: if the quantity indicator has a fractional number, then it must be entered into the system using a period, not a comma. Thus, the power calculator allows you to convert watts into amperes in a matter of time, you don’t need to write out complex formulas and think about their calculation.

sewing. Everything is simple and accessible!


Table for calculating Amperes and loads in Watts
Similar articles

2024 my-kross.ru. Cats and dogs. Small animals. Health. Medicine.