Применение хлора в жизни человека. Строение атома хлора. Ртутный метод с жидким катодом

ОПРЕДЕЛЕНИЕ

Хлор - семнадцатый элемент Периодической таблицы. Обозначение - Cl от латинского «chlorum». Расположен в третьем периоде, VIIА группе. Относится к неметаллам. Заряд ядра равен 17.

Важнейшим природным соединением хлора является хлорид натрия (поваренная соль) NaCl. Главная масса хлорида натрия находится в воде морей и океанов. Воды многих озер также содержат значительное количество NaCl. Он встречается также и в твердом виде, образуя местами в земной коре мощные пласты так называемой каменной соли. В природе распространены и другие соединения хлора, например хлорид калия в виде минералов карналлита KCl×MgCl 2 ×6H 2 O и сильвина KCl.

В обычных условиях хлор представляет собой газ желто-зеленого цвета (рис. 1), который хорошо растворяется в воде. При охлаждении из водных растворов выделяются кристаллогидраты, являющиеся кларатами приблизительного состава Cl 2 ×6H 2 Oи Cl 2 ×8H 2 O.

Рис. 1. Хлор в жидком состоянии. Внешний вид.

Атомная и молекулярная масса хлора

Относительной атомной массой элемента называют отношение массы атома данного элемента к 1/12 массы атома углерода. Относительная атомная масса безразмерна и обозначается A r (индекс «r» — начальная буква английского слова relative, что в переводе означает «относительный»). Относительная атомная масса атомарного хлора равна 35,457 а.е.м.

Массы молекул, также как массы атомов выражаются в атомных единицах массы. Молекулярной массой вещества называется масса молекулы, выраженная в атомных единицах массы. Относительной молекулярной массой вещества называют отношение массы молекулы данного вещества к 1/12 массы атома углерода, масса которого равна 12 а.е.м. Известно, что молекула хлора двухатомна - Cl 2 . Относительная молекулярная масса молекулы хлора будет равна:

M r (Cl 2) = 35,457 × 2 ≈ 71.

Изотопы хлора

Известно, что в природе хлор может находиться в виде двух стабильных изотопов 35 Cl (75,78%) и 37 Cl (24,22%). Их массовые числа равны 35 и 37 соответственно. Ядро атома изотопа хлора 35 Cl содержит семнадцать протонов и восемнадцать нейтронов, а изотоп 37 Cl- такое же количество протонов и двадцать нейтронов.

Существуют искусственные изотопы хлора с массовыми числами от 35-ти до 43-х, среди которых наиболее стабильным является 36 Cl с периодом полураспада равным 301 тысяча лет.

Ионы хлора

На внешнем энергетическом уровне атома хлора имеется семь электронов, которые являются валентными:

1s 2 2s 2 2p 6 3s 2 3p 5 .

В результате химического взаимодействия хлор может терять свои валентные электроны, т.е. являться их донором, и превращаться в положительно заряженные ионы или принимать электроны другого атома, т.е. являться их акцептором, и превращаться в отрицательно заряженные ионы:

Cl 0 -7e → Cl 7+ ;

Cl 0 -5e → Cl 5+ ;

Cl 0 -4e → Cl 4+ ;

Cl 0 -3e → Cl 3+ ;

Cl 0 -2e → Cl 2+ ;

Cl 0 -1e → Cl 1+ ;

Cl 0 +1e → Cl 1- .

Молекула и атом хлора

Молекула хлора состоит из двух атомов - Cl 2 . Приведем некоторые свойства, характеризующие атом и молекулу хлора:

Примеры решения задач

ПРИМЕР 1

Задание Какой объем хлора надо взять для реакции с 10 л водорода? Газы находятся при одинаковых условиях.
Решение Запишем уравнение реакции взаимодействия хлора с водородом:

Cl 2 + H 2 = 2HCl.

Рассчитаем количество вещества водорода, вступившего в реакцию:

n (H 2)=V (H 2) / V m ;

n (H 2)= 10 / 22,4 = 0,45 моль.

Согласно уравнению, n (H 2)= n (Cl 2)= 0,45 моль. Тогда, объем хлора, вступившего в реакцию взаимодействия с водородом равен:

Радиус иона (+7e)27 (-1e)181 пм Электроотрицательность
(по Полингу) 3.16 Электродный потенциал 0 Степени окисления 7, 6, 5, 4, 3, 1, −1 Термодинамические свойства простого вещества Плотность (при −33.6 °C)1,56
/см³ Молярная теплоёмкость 21.838 Дж /( ·моль) Теплопроводность 0.009 Вт /( ·) Температура плавления 172.2 Теплота плавления 6.41 кДж /моль Температура кипения 238.6 Теплота испарения 20.41 кДж /моль Молярный объём 18.7 см ³/моль Кристаллическая решётка простого вещества Структура решётки орторомбическая Параметры решётки a=6,29 b=4,50 c=8,21 Отношение c/a — Температура Дебая n/a K

Хлор (χλωρός — зелёный) — элемент главной подгруппы седьмой группы, третьего периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 17. Обозначается символом Cl (лат. Chlorum). Химически активный неметалл. Входит в группу галогенов (первоначально название «галоген» использовал немецкий химик Швейгер для хлора [дословно «галоген» переводится как солерод], но оно не прижилось, и впоследствии стало общим для VII группы элементов, в которую входит и хлор).

Простое вещество хлор (CAS-номер: 7782-50-5) при нормальных условиях — ядовитый газ желтовато-зелёного цвета, с резким запахом. Молекула хлора двухатомная (формула Cl 2 ).

Схема атома хлора

Впервые хлор был получен в 1772 г. Шееле, описавшим его выделение при взаимодействии пиролюзита с соляной кислотой в своём трактате о пиролюзите:

4HCl + MnO 2 = Cl 2 + MnCl 2 + 2H 2 O

Шееле отметил запах хлора, схожий с запахом царской водки, его способность взаимодействовать с золотом и киноварью, а также его отбеливающие свойства.

Однако Шееле, в соответствии с господствовавшей в химии того времени теории флогистона, предположил, что хлор представляет собой дефлогистированную соляную кислоту, то есть оксид соляной кислоты. Бертолле и Лавуазье предположили, что хлор является оксидом элемента мурия, однако попытки его выделения оставались безуспешными вплоть до работ Дэви, которому электролизом удалось разложить поваренную соль на натрий и хлор.

Распространение в природе

В природе встречаются два изотопа хлора 35 Cl и 37 Cl. В земной коре хлор самый распространённый галоген. Хлор очень активен — он непосредственно соединяется почти со всеми элементами периодической системы. Поэтому в природе он встречается только в виде соединений в составе минералов: галита NaCI, сильвина KCl, сильвинита KCl · NaCl, бишофита MgCl 2 · 6H2O, карналлита KCl · MgCl 2 · 6Н 2 O, каинита KCl · MgSO 4 · 3Н 2 О. Самые большие запасы хлора содержатся в составе солей вод морей и океанов.

На долю хлора приходится 0,025 % от общего числа атомов земной коры, кларковое число хлора — 0,19%, а человеческий организм содержит 0,25 % ионов хлора по массе. В организме человека и животных хлор содержится в основном в межклеточных жидкостях (в том числе в крови) и играет важную роль в регуляции осмотических процессов, а также в процессах, связанных с работой нервных клеток.

Изотопный состав

В природе встречаются 2 стабильных изотопа хлора: с массовым числом 35 и 37. Доли их содержания соответственно равны 75,78 % и 24,22 %.

Изотоп Относительная масса, а.е.м. Период полураспада Тип распада Ядерный спин
35 Cl 34.968852721 Стабилен 3/2
36 Cl 35.9683069 301000 лет β-распад в 36 Ar 0
37 Cl 36.96590262 Стабилен 3/2
38 Cl 37.9680106 37,2 минуты β-распад в 38 Ar 2
39 Cl 38.968009 55,6 минуты β-распад в 39 Ar 3/2
40 Cl 39.97042 1,38 минуты β-распад в 40 Ar 2
41 Cl 40.9707 34 c β-распад в 41 Ar
42 Cl 41.9732 46,8 c β-распад в 42 Ar
43 Cl 42.9742 3,3 c β-распад в 43 Ar

Физические и физико-химические свойства

При нормальных условиях хлор — жёлто-зелёный газ с удушающим запахом. Некоторые его физические свойства представлены в таблице.

Некоторые физические свойства хлора

Свойство Значение
Температура кипения −34 °C
Температура плавления −101 °C
Температура разложения
(диссоциации на атомы)
~1400°С
Плотность (газ, н.у.) 3,214 г/л
Сродство к электрону атома 3,65 эВ
Первая энергия ионизации 12,97 эВ
Теплоемкость (298 К, газ) 34,94 (Дж/моль·K)
Критическая температура 144 °C
Критическое давление 76 атм
Стандартная энтальпия образования (298 К, газ) 0 (кДж/моль)
Стандартная энтропия образования (298 К, газ) 222,9 (Дж/моль·K)
Энтальпия плавления 6,406 (кДж/моль)
Энтальпия кипения 20,41 (кДж/моль)

При охлаждении хлор превращается в жидкость при температуре около 239 К, а затем ниже 113 К кристаллизуется в орторомбическую решётку с пространственной группой Cmca и параметрами a=6,29 b=4,50 , c=8,21 . Ниже 100 К орторомбическая модификация кристаллического хлора переходит в тетрагональную , имеющую пространственную группу P4 2 /ncm и параметры решётки a=8,56 и c=6,12 .

Растворимость

Растворитель Растворимость г/100 г
Бензол Растворим
Вода (0 °C) 1,48
Вода (20 °C) 0,96
Вода (25 °C) 0,65
Вода (40 °C) 0,46
Вода (60 °C) 0,38
Вода (80 °C) 0,22
Тетрахлорметан (0 °C) 31,4
Тетрахлорметан (19 °C) 17,61
Тетрахлорметан (40 °C) 11
Хлороформ Хорошо растворим
TiCl 4 , SiCl 4 , SnCl 4 Растворим

На свету или при нагревании активно реагирует (иногда со взрывом) с водородом по радикальному механизму. Смеси хлора с водородом, содержащие от 5,8 до 88,3 % водорода, взрываются при облучении с образованием хлороводорода . Смесь хлора с водородом в небольших концентрациях горит бесцветным или желто-зелёным пламенем. Максимальная температура водородно-хлорного пламени 2200 °C.:

Cl 2 + H 2 → 2HCl 5Cl 2 + 2P → 2PCl 5 2S + Cl 2 → S 2 Cl 2 Cl 2 + 3F 2 (изб.) → 2ClF 3

Другие свойства

Cl 2 + CO → COCl 2

При растворении в воде или щелочах, хлор дисмутирует , образуя хлорноватистую (а при нагревании хлорную) и соляную кислоты , либо их соли:

Cl 2 + H 2 O → HCl + HClO 3Cl 2 + 6NaOH → 5NaCl + NaClO 3 + 3H 2 O Cl 2 + Ca(OH) 2 → CaCl(OCl) + H 2 O 4NH 3 + 3Cl 2 → NCl 3 + 3NH 4 Cl

Окислительные свойства хлора

Cl 2 + H 2 S → 2HCl + S

Реакции с органическими веществами

CH 3 -CH 3 + Cl 2 → C 2 H 6-x Cl x + HCl

Присоединяется к ненасыщенным соединениям по кратным связям:

CH 2 =CH 2 + Cl 2 → Cl-CH 2 -CH 2 -Cl

Ароматические соединения замещают атом водорода на хлор в присутствии катализаторов (например, AlCl 3 или FeCl 3):

C 6 H 6 + Cl 2 → C 6 H 5 Cl + HCl

Хлор способы получения хлора

Промышленные методы

Первоначально промышленный способ получения хлора основывался на методе Шееле , то есть реакции пиролюзита с соляной кислотой :

MnO 2 + 4HCl → MnCl 2 + Cl 2 + 2H 2 O 2NaCl + 2H 2 О → H 2 + Cl 2 + 2NaOH Анод : 2Cl - — 2е - → Cl 2 0 Катод : 2H 2 O + 2e - → H 2 + 2OH -

Так как параллельно электролизу хлорида натрия проходит процесс электролиз воды, то суммарное уравнение можно выразить следующим образом:

1,80 NaCl + 0,50 H 2 O → 1,00 Cl 2 + 1,10 NaOH + 0,03 H 2

Применяется три варианта электрохимического метода получения хлора. Два из них электролиз с твердым катодом: диафрагменный и мембранный методы, третий — электролиз с жидким катодом (ртутный метод производства). В ряду электрохимических методов производства самым легким и удобным способом является электролиз с ртутным катодом, но этот метод наносит значительный вред окружающей среде в результате испарения и утечек металлической ртути.

Диафрагменный метод с твердым катодом

Полость электролизера разделена пористой асбестовой перегородкой — диафрагмой — на катодное и анодное пространство, где соответственно размещены катод и анод электролизёра. Поэтому такой электролизёр часто называют диафрагменным, а метод получения — диафрагменным электролизом. В анодное пространство диафрагменного электролизера непрерывно поступает поток насыщенного анолита (раствора NaCl). В результате электрохимического процесса на аноде за счёт разложения галита выделяется хлор, а на катоде за счёт разложения воды — водород. При этом прикатодная зона обогащается гидроксидом натрия.

Мембранный метод с твердым катодом

Мембранный метод по сути, аналогичен диафрагменному, но анодное и катодное пространства разделены катионообменной полимерной мембраной. Мембранный метод производства эффективнее, чем диафрагменный, но сложнее в применении.

Ртутный метод с жидким катодом

Процесс проводят в электролитической ванне, которая состоит из электролизера, разлагателя и ртутного насоса, объединённых между собой коммуникациями. В электролитической ванне под действием ртутного насоса циркулирует ртуть, проходя через электролизёр и разлагатель. Катодом электролизера служит поток ртути. Аноды — графитовые или малоизнашивающиеся. Вместе с ртутью через электролизер непрерывно течет поток анолита — раствора хлорида натрия . В результате электрохимического разложения хлорида на аноде образуются молекулы хлора, а на катоде выделившийся натрий растворяется в ртути образуя амальгаму .

Лабораторные методы

В лабораториях для получения хлора обычно используют процессы, основанные на окислении хлороводорода сильными окислителями (например, оксидом марганца (IV) , перманганатом калия , дихроматом калия):

2KMnO 4 + 16HCl → 2KCl + 2MnCl 2 + 5Cl 2 +8H 2 O K 2 Cr 2 O 7 + 14HCl → 3Cl 2 + 2KCl + 2CrCl 3 + 7H 2 O

Хранение хлора

Производимый хлор хранится в специальных «танках» или закачивается в стальные баллоны высокого давления. Баллоны с жидким хлором под давлением имеют специальную окраску — болотный цвет. Следует отметить что при длительной эксплуатации баллонов с хлором в них накапливается чрезвычайно взрывчатый треххлористый азот , и поэтому время от времени баллоны с хлором должны проходить плановую промывку и очистку от хлорида азота.

Стандарты качества хлора

Согласно ГОСТ 6718-93 «Хлор жидкий. Технические условия» производятся следующие сорта хлора

Применение

Хлор применяют во многих отраслях промышленности, науки и бытовых нужд:

  • В производстве поливинилхлорида , пластикатов, синтетического каучука, из которых изготавливают: изоляцию для проводов, оконный профиль, упаковочные материалы , одежду и обувь, линолеум и грампластинки, лаки, аппаратуру и пенопласты , игрушки, детали приборов, строительные материалы. Поливинилхлорид производят полимеризацией винилхлорида, который сегодня чаще всего получают из этилена сбалансированным по хлору методом через промежуточный 1,2-дихлорэтан.
  • Отбеливающие свойства хлора известны с давних времен, хотя не сам хлор «отбеливает», а атомарный кислород, который образуется при распаде хлорноватистой кислоты: Cl 2 + H 2 O → HCl + HClO → 2HCl + O.. Этот способ отбеливания тканей, бумаги, картона используется уже несколько веков.
  • Производство хлорорганических инсектицидов — веществ, убивающих вредных для посевов насекомых, но безопасные для растений. На получение средств защиты растений расходуется значительная часть производимого хлора. Один из самых важных инсектицидов — гексахлорциклогексан (часто называемый гексахлораном). Это вещество впервые синтезировано ещё в 1825 г. Фарадеем, но практическое применение нашло только через 100 с лишним лет — в 30-х годах нашего столетия.
  • Использовался как боевое отравляющее вещество , а так же для производства других боевых отравляющих веществ: иприт , фосген .
  • Для обеззараживания воды — «хлорирования ». Наиболее распространённый способ обеззараживания питьевой воды; основан на способности свободного хлора и его соединений угнетать ферментные системы микроорганизмов катализирующие окислительно-восстановительные процессы. Для обеззараживания питьевой воды применяют: хлор, двуокись хлора, хлорамин и хлорную известь. СанПиН 2.1.4.1074-01 устанавливает следующие пределы (коридор)допустимого содержания свободного остаточного хлора в питьевой воде централизованного водоснабжения 0.3 — 0.5 мг/л. Ряд учёных и даже политиков в России критикуют саму концепцию хлорирования водопроводной воды, но альтернативы дезинфицирующему последействию соединений хлора предложить не могут. Материалы, из которых изготовлены водопроводные трубы, по разному взаимодействуют с хлорированной водопроводной водой. Свободный хлор в водопроводной воде существенно сокращает срок службы трубопроводов на основе полиолефинов : полиэтиленовых труб различного вида, в том числе сшитого полиэтилена, большие известного как ПЕКС (PEX, PE-X). В США для контроля допуска трубопроводов из полимерных материалов к использованию в водопроводах с хлорированной водой вынуждены были принять 3 стандарта: ASTM F2023 применительно к трубам мембранах и скелетных мышцах. Эти каналы выполняют важные функции в регуляции объёма жидкости, трансэпителиальном транспорте ионов и стабилизации мембранных потенциалов, участвуют в поддержании рН клеток. Хлор накапливается в висцеральной ткани, коже и скелетных мышцах. Всасывается хлор, в основном, в толстом кишечнике . Всасывание и экскреция хлора тесно связаны с ионами натрия и бикарбонатами, в меньшей степени с минералокортикоидами и активностью Na + /K + — АТФ -азы. В клетках аккумулируется 10-15 % всего хлора, из этого количества от 1/3 до 1/2 — в эритроцитах . Около 85 % хлора находятся во внеклеточном пространстве. Хлор выводится из организма в основном с мочой (90-95 %), калом (4-8 %) и через кожу (до 2 %). Экскреция хлора связана с ионами натрия и калия, и реципрокно с HCO 3 - (кислотно-щелочной баланс).

    Человек потребляет 5-10 г NaCl в сутки. Минимальная потребность человека в хлоре составляет около 800 мг в сутки. Младенец получает необходимое количество хлора через молоко матери, в котором содержится 11 ммоль/л хлора. NaCl необходим для выработки в желудке соляной кислоты, которая способствует пищеварению и уничтожению болезнетворных бактерий. В настоящее время участие хлора в возникновении отдельных заболеваний у человека изучено недостаточно хорошо, главным образом из-за малого количества исследований. Достаточно сказать, что не разработаны даже рекомендации по норме суточного потребления хлора. Мышечная ткань человека содержит 0,20-0,52 % хлора, костная — 0,09 %; в крови — 2,89 г/л. В организме среднего человека (масса тела 70 кг) 95 г хлора. Ежедневно с пищей человек получает 3-6 г хлора, что с избытком покрывает потребность в этом элементе.

    Ионы хлора жизненно необходимы растениям. Хлор участвует в энергетическом обмене у растений, активируя окислительное фосфорилирование . Он необходим для образования кислорода в процессе фотосинтеза изолированными хлоропластами , стимулирует вспомогательные процессы фотосинтеза, прежде всего те из них, которые связаны с аккумулированием энергии. Хлор положительно влияет на поглощение корнями кислорода, соединений калия, кальция, магния. Чрезмерная концентрация ионов хлора в растениях может иметь и отрицательную сторону, например, снижать содержание хлорофилла , уменьшать активность фотосинтеза, задерживать рост и развитие растений Баскунчак хлора). Хлор был одним из первых химических отравляющих веществ, использованных

    — При помощи аналитического лабораторного оборудования, лабораторных и промышленных электродов, в частности: электродов сравнения ЭСр-10101 анализирующих содержание Cl— и К+.

    Хлорные запросы, нас находят по запросам хлор

    Взаимодействие, отравление, воде, реакции и получение хлора

    • оксид
    • раствор
    • кислоты
    • соединения
    • свойства
    • определение
    • диоксид
    • формула
    • масса
    • активный
    • жидкий
    • вещество
    • применение
    • действие
    • степень окисления
    • гидроксид

Хлор

ХЛОР -а; м. [от греч. chlōros - бледно-зелёный] Химический элемент (Cl), удушливый газ зеленовато-жёлтого цвета с резким запахом (используется как отравляющее и обеззараживающее средство). Соединения хлора. Отравление хлором.

Хло́рный (см.).

хлор

(лат. Chlorum), химический элемент VII группы периодической системы, относится к галогенам. Название от греческого chlōros - жёлто-зелёный. Свободный хлор состоит из двухатомных молекул (Cl 2); газ жёлто-зелёного цвета с резким запахом; плотность 3,214 г/л; t пл -101°C; t кип -33,97°C; при обычной температуре легко сжижается под давлением 0,6 МПа. Химически очень активен (окислитель). Главные минералы - галит (каменная соль), сильвин, бишофит; морская вода содержит хлориды натрия, калия, магния и других элементов. Применяют в производстве хлорсодержащих органических соединений (60-75%), неорганических веществ (10-20%), для отбеливания целлюлозы и тканей (5-15%), для санитарных нужд и обеззараживания (хлорирования) воды. Токсичен.

ХЛОР

ХЛОР (лат. Сhlorum), Cl (читается «хлор»), химический элемент с атомным номером 17, атомная масса 35,453. В свободном виде - желто-зеленый тяжелый газ с резким удушливым запахом (отсюда название: греч. chloros - желто-зеленый).
Природный хлор представляет смесь двух нуклидов (см. НУКЛИД) с массовыми числами 35 (в смеси 75,77% по массе) и 37 (24,23%). Конфигурация внешнего электронного слоя 3s 2 p 5 . В соединениях проявляет главным образом степени окисления –1, +1, +3, +5 и +7 (валентности I, III, V и VII). Расположен в третьем периоде в группе VIIА периодической системы элементов Менделеева, относится к галогенам (см. ГАЛОГЕНЫ) .
Радиус нейтрального атома хлора 0,099 нм, ионные радиусы равны, соответственно (в скобках указаны значения координационного числа): Cl - 0,167 нм (6), Cl 5+ 0,026 нм (3) и Clr 7+ 0,022 нм (3) и 0,041 нм (6). Энергии последовательной ионизации нейтрального атома хлора равны, соответственно, 12,97, 23,80, 35,9, 53,5, 67,8, 96,7 и 114,3 эВ. Сродство к электрону 3,614 эВ. По шкале Полинга электроотрицательность хлора 3,16.
История открытия
Важнейшее химическое соединение хлора - поваренная соль (химическая формула NaCl, химическое название хлорид натрия) - было известно человеку с древнейших времен. Имеются свидетельства того, что добыча поваренной соли осуществлялась еще 3-4 тысячи лет до нашей эры в Ливии. Возможно, что, используя поваренную соль для различных манипуляций, алхимики сталкивались и с газообразным хлором. Для растворения «царя металлов» - золота - они использовали «царскую водку» - смесь соляной и азотной кислот, при взаимодействии которых выделяется хлор.
Впервые газ хлор получил и подробно описал шведский химик К. Шееле (см. ШЕЕЛЕ Карл Вильгельм) в 1774 году. Он нагревал соляную кислоту с минералом пиролюзитом (см. ПИРОЛЮЗИТ) MnO 2 и наблюдал выделение желто-зеленого газа с резким запахом. Так как в те времена господствовала теория флогистона (см. ФЛОГИСТОН) , новый газ Шееле рассматривал как «дефлогистонированную соляную кислоту», т. е. как окись (оксид) соляной кислоты. А.Лавуазье (см. ЛАВУАЗЬЕ Антуан Лоран) рассматривал газ как оксид элемента «мурия» (соляную кислоту называли муриевой, от лат. muria - рассол). Такую же точку зрения сначала разделял английский ученый Г. Дэви (см. ДЭВИ Гемфри) , который потратил много времени на то, чтобы разложить «окись мурия» на простые вещества. Это ему не удалось, и к 1811 году Дэви пришел к выводу, что данный газ - это простое вещество, и ему отвечает химический элемент. Дэви первым предложил в соответствие с желто-зеленой окраской газа назвать его chlorine (хлорин). Название «хлор» элементу дал в 1812 французский химик Ж. Л. Гей-Люссак (см. ГЕЙ-ЛЮССАК Жозеф Луи) ; оно принято во всех странах, кроме Великобритании и США, где сохранилось название, введенное Дэви. Высказывалось мнение о том, что данный элемент следует назвать «галоген» (т. е. рождающий соли), но оно со временем стало общим названием всех элементов группы VIIA.
Нахождение в природе
Содержание хлора в земной коре составляет 0,013% по массе, в заметной концентрации он в виде иона Cl – присутствует в морской воде (в среднем около 18,8 г/л). Химически хлор высоко активен и поэтому в свободном виде в природе не встречается. Он входит в состав таких минералов, образующих большие залежи, как поваренная, или каменная, соль (галит (см. ГАЛИТ) ) NaCl, карналлит (см. КАРНАЛЛИТ) KCl·MgCl 2 ·6H 21 O, сильвин (см. СИЛЬВИН) КСl, сильвинит (Na, K)Cl, каинит (см. КАИНИТ) КСl·MgSO 4 ·3Н 2 О, бишофит (см. БИШОФИТ) MgCl 2 ·6H 2 O и многих других. Хлор можно обнаружить в самых разных породах, в почве.
Получение
Для получения газообразного хлора используют электролиз крепкого водного раствора NaCl (иногда используют KCl). Электролиз проводят с использованием катионообменной мембраны, разделяющей катодное и анодное пространства. При этом за счет процесса
2NaCl + 2H 2 O = 2NaOH + H 2 + Cl 2
получают сразу три ценных химических продукта: на аноде - хлор, на катоде - водород (см. ВОДОРОД) , и в электролизере накапливается щелочь (1,13 тонны NaOH на каждую тонну полученного хлора). Производство хлора электролизом требует больших затрат электроэнергии: на получение1 т хлора расходуется от 2,3 до 3,7 МВт.
Для получения хлора в лаборатории используют реакцию концентрированной соляной кислоты с каким-либо сильным окислителем (перманганатом калия KMnO 4 , дихроматом калия K 2 Cr 2 O 7 , хлоратом калия KClO 3 , хлорной известью CaClOCl, оксидом марганца (IV) MnO 2). Наиболее удобно использовать для этих целей перманганат калия: в этом случае реакция протекает без нагревания:
2KMnO 4 + 16HCl = 2KСl + 2MnCl 2 + 5Cl 2 + 8H 2 O.
При необходимости хлор в сжиженном (под давлением) виде транспортируют в железнодорожных цистернах или в стальных баллонах. Баллоны с хлором имеют специальную маркировку, но даже при ее отсутствии хлорный баллон легко отличить от баллонов с другими неядовитыми газами. Дно хлорных баллонов имеет форму полушария, и баллон с жидким хлором невозможно без опоры поставить вертикально.
Физические и химические свойства

При обычных условиях хлор - желто-зеленый газ, плотность газа при 25°C 3,214 г/дм 3 (примерно в 2,5 раза больше плотности воздуха). Температура плавления твердого хлора –100,98°C, температура кипения –33,97°C. Стандартный электродный потенциал Сl 2 /Сl - в водном растворе равен +1,3583 В.
В свободном состоянии существует в виде двухатомных молекул Сl 2 . Межъядерное расстояние в этой молекуле 0,1987 нм. Сродство к электрону молекулы Сl 2 2,45 эВ, потенциал ионизации 11,48 эВ. Энергия диссоциации молекул Сl 2 на атомы сравнительно невелика и составляет 239,23 кДж/моль.
Хлор немного растворим в воде. При температуре 0°C растворимость составляет 1,44 масс.%, при 20°C - 0,711°C масс.%, при 60°C - 0,323 масс. %. Раствор хлора в воде называют хлорной водой. В хлорной воде устанавливается равновесие:
Сl 2 + H 2 O H + = Сl - + HOСl.
Для того, чтобы сместить это равновесие влево, т. е. понизить растворимость хлора в воде, в воду следует добавить или хлорид натрия NaCl, или какую-либо нелетучую сильную кислоту (например, серную).
Хлор хорошо растворим во многих неполярных жидкостях. Жидкий хлор сам служит растворителем таких веществ, как ВСl 3 , SiCl 4 , TiCl 4 .
Из-за низкой энергии диссоциации молекул Сl 2 на атомы и высокого сродства атома хлора к электрону химически хлор высоко активен. Он вступает в непосредственное взаимодействие с большинством металлов (в том числе, например, с золотом) и многими неметаллами. Так, без нагревания хлор реагирует с щелочными (см. ЩЕЛОЧНЫЕ МЕТАЛЛЫ) и щелочноземельными металлами (см. ЩЕЛОЧНОЗЕМЕЛЬНЫЕ МЕТАЛЛЫ) , с сурьмой:
2Sb + 3Cl 2 = 2SbCl 3
При нагревании хлор реагирует с алюминием:
3Сl 2 + 2Аl = 2А1Сl 3
и железом:
2Fe + 3Cl 2 = 2FeCl 3 .
С водородом H 2 хлор реагирует или при поджигании (хлор спокойно горит в атмосфере водорода), или при облучении смеси хлора и водорода ультрафиолетовым светом. При этом возникает газ хлороводород НСl:
Н 2 + Сl 2 = 2НСl.
Раствор хлороводорода в воде называют соляной (см. СОЛЯНАЯ КИСЛОТА) (хлороводородной) кислотой. Максимальная массовая концентрация соляной кислоты около 38%. Соли соляной кислоты - хлориды (см. ХЛОРИДЫ) , например, хлорид аммония NH 4 Cl, хлорид кальция СаСl 2 , хлорид бария ВаСl 2 и другие. Многие хлориды хорошо растворимы в воде. Практически нерастворим в воде и в кислых водных растворах хлорид серебра AgCl. Качественная реакция на присутствие хлорид-ионов в растворе - образование с ионами Ag + белого осадка AgСl, практически нерастворимого в азотнокислой среде:
СаСl 2 + 2AgNO 3 = Ca(NO 3) 2 + 2AgCl.
При комнатной температуре хлор реагирует с серой (образуется так называемая однохлористая сера S 2 Cl 2) и фтором (образуются соединения ClF и СlF 3). При нагревании хлор взаимодействует с фосфором (образуются, в зависимости от условий проведения реакции, соединения РСl 3 или РСl 5), мышьяком, бором и другими неметаллами. Непосредственно хлор не реагирует с кислородом, азотом, углеродом (многочисленные соединения хлора с этими элементами получают косвенными путями) и инертными газами (в последнее время ученые нашли способы активирования подобных реакций и их осуществления «напрямую»). С другими галогенами хлор образует межгалогенные соединения, например, очень сильные окислители - фториды ClF, ClF 3 , ClF 5 . Окислительная способность хлора выше, чем брома, поэтому хлор вытесняет бромид-ион из растворов бромидов, например:
Cl 2 + 2NaBr = Br 2 + 2NaCl
Хлор вступает в реакции замещения со многими органическими соединениями, например, с метаном СН 4 и бензолом С 6 Н 6:
СН 4 + Сl 2 = СН 3 Сl + НСl или С 6 Н 6 + Сl 2 = С 6 Н 5 Сl + НСl.
Молекула хлора способна присоединятся по кратным связям (двойным и тройным) к органическим соединениям, например, к этилену С 2 Н 4:
С 2 Н 4 + Сl 2 = СН 2 СlСН 2 Сl.
Хлор вступает во взаимодействие с водными растворами щелочей. Если реакция протекает при комнатной температуре, то образуются хлорид (например, хлорид калия КCl) и гипохлорит (см. ГИПОХЛОРИТЫ) (например, гипохлорит калия КClО):
Cl 2 + 2КОН = КClО + КСl +Н 2 О.
При взаимодействии хлора с горячим (температура около 70-80°C) раствором щелочи образуется соответствующий хлорид и хлорат (см. ХЛОРАТЫ) , например:
3Сl 2 + 6КОН= 5КСl + КСlО 3 + 3Н 2 О.
При взаимодействии хлора с влажной кашицей из гидроксида кальция Са(ОН) 2 образуется хлорная известь (см. ХЛОРНАЯ ИЗВЕСТЬ) («хлорка») СаСlОСl.
Степени окисления хлора +1 отвечает слабая малоустойчивая хлорноватистая кислота (см. ХЛОРНОВАТИСТАЯ КИСЛОТА) НСlО. Ее соли - гипохлориты, например, NaClO - гипохлорит натрия. Гипохлориты - сильнейшие окислители, широко используются как отбеливающие и дезинфицирующие агенты. При взаимодействии гипохлоритов, в частности, хлорной извести, с углекислым газом СО 2 образуется среди других продуктов летучая хлорноватистая кислота (см. ХЛОРНОВАТИСТАЯ КИСЛОТА) , которая может разлагаться с выделением оксида хлора (I) Сl 2 О:
2НСlО = Сl 2 О + Н 2 О.
Именно запах этого газа Сl 2 О - характерный запах «хлорки».
Степени окисления хлора +3 отвечает малоустойчивая кислота средней силы НСlО 2 . Эту кислоту называют хлористой, ее соли - хлориты (см. ХЛОРИТЫ (соли)) , например, NaClO 2 - хлорит натрия.
Степени окисления хлора +4 соответствует только одно соединение - диоксид хлора СlО 2 .
Степени окисления хлора +5 отвечает сильная, устойчивая только в водных растворах при концентрации ниже 40%, хлорноватая кислота (см. ХЛОРНОВАТИСТАЯ КИСЛОТА) НСlО 3 . Ее соли - хлораты, например, хлорат калия КСlО 3 .
Степени окисления хлора +6 соответствует только одно соединение - триоксид хлора СlО 3 (существует в виде димера Сl 2 О 6).
Степени окисления хлора +7 отвечает очень сильная и довольно устойчивая хлорная кислота (см. ХЛОРНАЯ КИСЛОТА) НСlО 4 . Ее соли - перхлораты (см. ПЕРХЛОРАТЫ) , например, перхлорат аммония NH 4 ClO 4 или перхлорат калия КСlО 4 . Следует отметить, что перхлораты тяжелых щелочных металлов - калия, и особенно рубидия и цезия мало растворимы в воде. Оксид, соответствующий степени окисления хлора +7 - Сl 2 О 7 .
Среди соединений, содержащих хлор в положительных степенях окисления, наиболее сильными окислительными свойствами обладают гипохлориты. Для перхлоратов окислительные свойства нехарактерны.
Применение
Хлор - один из важнейших продуктов химической промышленности. Его мировое производство составляет десятки миллионов тонн в год. Хлор используют для получения дезинфицирующих и отбеливающих средств (гипохлорита натрия, хлорной извести и других), соляной кислоты, хлоридов многих металлов и неметаллов, многих пластмасс (поливинилхлорида (см. ПОЛИВИНИЛХЛОРИД) и других), хлорсодержащих растворителей (дихлорэтана СН 2 СlСН 2 Сl, четыреххлористого углерода ССl 4 и др.), для вскрытия руд, разделения и очистки металлов и т.д. Хлор применяют для обеззараживания воды (хлорирования (см. ХЛОРИРОВАНИЕ) ) и для многих других целей.
Биологическая роль
Хлор относится к важнейшим биогенным элементам (см. БИОГЕННЫЕ ЭЛЕМЕНТЫ) и входит в состав всех живых организмов. Некоторые растения, так называемые галофиты, не только способны расти на сильно засоленных почвах, но и накапливают в больших количествах хлориды. Известны микроорганизмы (галобактерии и др.) и животные, обитающие в условиях высокой солености среды. Хлор - один из основных элементов водно-солевого обмена животных и человека, определяющих физико-химические процессы в тканях организма. Он участвует в поддержании кислотно-щелочного равновесия в тканях, осморегуляции (см. ОСМОРЕГУЛЯЦИЯ) (хлор - основное осмотически активное вещество крови, лимфы и др. жидкостей тела), находясь, в основном, вне клеток. У растений хлор принимает участие в окислительных реакциях и фотосинтезе.
Мышечная ткань человека содержит 0,20-0,52% хлора, костная - 0,09%; в крови - 2,89 г/л. В организме среднего человека (масса тела 70 кг) 95 г хлора. Ежедневно с пищей человек получает 3-6 г хлора, что с избытком покрывает потребность в этом элементе.
Особенности работы с хлором
Хлор - ядовитый удушливый газ, при попадании в легкие вызывает ожог легочной ткани, удушье. Раздражающее действие на дыхательные пути оказывает при концентрации в воздухе около 0,006 мг/л. Хлор был одним из первых химических отравляющих веществ (см. ОТРАВЛЯЮЩИЕ ВЕЩЕСТВА) , использованных Германией в Первую мировую войну. При работе с хлором следует пользоваться защитной спецодеждой, противогазом, перчатками. На короткое время защитить органы дыхания от попадания в них хлора можно тряпичной повязкой, смоченной раствором сульфита натрия Na 2 SO 3 или тиосульфата натрия Na 2 S 2 O 3 . ПДК хлора в воздухе рабочих помещений 1 мг/м 3 , в воздухе населенных пунктов 0,03 мг/м 3 .


Энциклопедический словарь . 2009 .

Синонимы :

Смотреть что такое "хлор" в других словарях:

    Хлор, а … Русское словесное ударение

    хлор - хлор, а … Русский орфографический словарь

    хлор - хлор/ … Морфемно-орфографический словарь

    - (греч. chloros зеленовато желтый). Химически простое, газообразное тело, зеленовато желтого цвета, острого, раздражающего запаха, имеющее способность обесцвечивать растительные вещества. Словарь иностранных слов, вошедших в состав русского языка … Словарь иностранных слов русского языка

    - (символ С1), широко распространенный неметаллический элемент, один из ГАЛОГЕНОВ (элементы седьмой группы периодической таблицы), впервые открытый в 1774 г. Он входит в состав поваренной соли (NaCl). Хлор представляет собой зеленовато желтый… … Научно-технический энциклопедический словарь

    ХЛОР - ХЛОР, С12, хим. элемент, порядковый номер 17, атомный вес 35,457. Находясь в VІI группе III периода, атомы хлора имеют 7 наружных электронов, благодаря чему X. ведет себя как типичный одновалентный металлоид. X. разделен на изотопы с атомными… … Большая медицинская энциклопедия

    Хлор - обычно получают электролизом хлоридов щелочных металлов, в частности, хлорида натрия. Хлор зеленовато желтый удушливый, вызывающий коррозию газ, который в 2,5 раза плотнее воздуха, малорастворимый в воде и легко сжижаемый. Обычно транспортируется … Официальная терминология

    Хлор - (Chlorum), Cl, химический элемент VII группы периодической системы, атомный номер 17, атомная масса 35,453; относится к галогенам; жёлто зелёный газ, tкип 33,97°C. Используется в производстве поливинилхлорида, хлоропренового каучука,… … Иллюстрированный энциклопедический словарь

    ХЛОР, хлора, мн. нет, муж. (от греч. chloros зеленый) (хим.). Химический элемент, удушливый газ, употр. в технике, в санитарии как обеззараживающее и в военном деле как отравляющее вещество. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

    Хлор... Начальная часть сложных слов, вносящая значения сл.: хлор, хлористый (хлорорганический, хлорацетон, хлорбензол, хлорметан и т.п.). Толковый словарь Ефремовой. Т. Ф. Ефремова. 2000 … Современный толковый словарь русского языка Ефремовой

Книги

  • Российский театр или Полное собрание всех российских театральных сочинений. Ч. 24. Оперы: Опекун Профессор. - Я. Княжнин. Несчастье от кареты. - Радость Душиньки. - Матросские шутки. - . Хлор царевич, , . Книга представляет собой репринтное издание 1786 года. Несмотря на то, что была проведена серьезная работа по восстановлению первоначального качества издания, на некоторых страницах могут…

Рассмотрены физические свойства хлора: плотность хлора, его теплопроводность, удельная теплоемкость и динамическая вязкость при различных температурах. Физические свойства Cl 2 представлены в виде таблиц для жидкого, твердого и газообразного состояния этого галогена.

Основные физические свойства хлора

Хлор входит в VII группу третьего периода периодической системы элементов под номером 17. Он относится к подгруппе галогенов, имеет относительные атомную и молекулярные массы 35,453 и 70,906, соответственно. При температурах выше -30°С хлор представляет собой зеленовато-желтый газ с характерным резким раздражающим запахом. Он легко сжижается под обычным давлением (1,013·10 5 Па), будучи охлажден до -34°С, и образует прозрачную жидкость янтарного цвета, затвердевающую при температуре -101°С.

Из-за своей высокой химической активности свободный хлор не встречается в природе, а существует только в форме соединений. Он содержится главным образом в минерале галите (), также входит в состав таких минералов, как: сильвин (KCl), карналлит (KCl·MgCl 2 ·6H 2 O) и сильвинит (KCl·NaCl). Содержание хлора в земной коре приближается к 0,02% от общего числа атомов земной коры, где он находится в виде двух изотопов 35 Cl и 37 Cl в процентном соотношении 75,77% 35 Cl и 24,23% 37 Cl.

Физические свойства хлора — таблица основных показателей
Свойство Значение
Температура плавления, °С -100,5
Температура кипения, °С -30,04
Критическая температура, °С 144
Критическое давление, Па 77,1·10 5
Критическая плотность, кг/м 3 573
Плотность газа (при 0°С и 1,013·10 5 Па), кг/м 3 3,214
Плотность насыщенного пара (при 0°С и 3,664·10 5 Па), кг/м 3 12,08
Плотность жидкого хлора (при 0°С и 3,664·10 5 Па), кг/м 3 1468
Плотность жидкого хлора (при 15,6°С и 6,08·10 5 Па), кг/м 3 1422
Плотность твердого хлора (при -102°С), кг/м 3 1900
Относительная плотность по воздуху газа (при 0°С и 1,013·10 5 Па) 2,482
Относительная плотность по воздуху насыщенного пара (при 0°С и 3,664·10 5 Па) 9,337
Относительная плотность жидкого хлора при 0°С (по воде при 4°С) 1,468
Удельный объем газа (при 0°С и 1,013·10 5 Па), м 3 /кг 0,3116
Удельный объем насыщенного пара (при 0°С и 3,664·10 5 Па), м 3 /кг 0,0828
Удельный объем жидкого хлора (при 0°С и 3,664·10 5 Па), м 3 /кг 0,00068
Давление паров хлора при 0°С, Па 3,664·10 5
Динамическая вязкость газа при 20°С, 10 -3 Па·с 0,013
Динамическая вязкость жидкого хлора при 20°С, 10 -3 Па·с 0,345
Теплота плавления твердого хлора (при температуре плавления), кДж/кг 90,3
Теплота парообразования (при температуре кипения), кДж/кг 288
Теплота сублимации (при температуре плавления), кДж/моль 29,16
Молярная теплоемкость C p газа (при -73…5727°С), Дж/(моль·К) 31,7…40,6
Молярная теплоемкость C p жидкого хлора (при -101…-34°С), Дж/(моль·К) 67,1…65,7
Коэффициент теплопроводности газа при 0°С, Вт/(м·К) 0,008
Коэффициент теплопроводности жидкого хлора при 30°С, Вт/(м·К) 0,62
Энтальпия газа, кДж/кг 1,377
Энтальпия насыщенного пара, кДж/кг 1,306
Энтальпия жидкого хлора, кДж/кг 0,879
Показатель преломления при 14°С 1,367
Удельная электропроводность при -70°С, См/м 10 -18
Сродство к электрону, кДж/моль 357
Энергия ионизации, кДж/моль 1260

Плотность хлора

При нормальных условиях хлор представляет собой тяжелый газ, плотность которого приблизительно в 2,5 раза выше . Плотность газообразного и жидкого хлора при нормальных условиях (при 0°С) равна, соответственно 3,214 и 1468 кг/м 3 . При нагревании жидкого или газообразного хлора его плотность снижается из-за увеличения объема вследствие теплового расширения.

Плотность газообразного хлора

В таблице представлены значения плотности хлора в газообразном состоянии при различных температурах (в интервале от -30 до 140°С) и нормальном атмосферном давлении (1,013·10 5 Па). Плотность хлора меняется с изменением температуры — при нагревании она уменьшается. Например, при 20°С плотность хлора равна 2,985 кг/м 3 , а при повышении температуры этого газа до 100°С, величина плотности снижается до значения 2,328 кг/м 3 .

Плотность газообразного хлора при различных температурах
t, °С ρ, кг/м 3 t, °С ρ, кг/м 3
-30 3,722 60 2,616
-20 3,502 70 2,538
-10 3,347 80 2,464
0 3,214 90 2,394
10 3,095 100 2,328
20 2,985 110 2,266
30 2,884 120 2,207
40 2,789 130 2,15
50 2,7 140 2,097

При росте давления плотность хлора увеличивается . Ниже в таблицах приведена плотность газообразного хлора в интервале температуры от -40 до 140°С и давлении от 26,6·10 5 до 213·10 5 Па. С повышением давления плотность хлора в газообразном состоянии увеличивается пропорционально. Например, увеличение давления хлора с 53,2·10 5 до 106,4·10 5 Па при температуре 10°С приводит к двукратному увеличению плотности этого газа.

Плотность газообразного хлора при различных температурах и давлении от 0,26 до 1 атм.
↓ t, °С | P, кПа → 26,6 53,2 79,8 101,3
-40 0,9819 1,996
-30 0,9402 1,896 2,885 3,722
-20 0,9024 1,815 2,743 3,502
-10 0,8678 1,743 2,629 3,347
0 0,8358 1,678 2,528 3,214
10 0,8061 1,618 2,435 3,095
20 0,7783 1,563 2,35 2,985
30 0,7524 1,509 2,271 2,884
40 0,7282 1,46 2,197 2,789
50 0,7055 1,415 2,127 2,7
60 0,6842 1,371 2,062 2,616
70 0,6641 1,331 2 2,538
80 0,6451 1,292 1,942 2,464
90 0,6272 1,256 1,888 2,394
100 0,6103 1,222 1,836 2,328
110 0,5943 1,19 1,787 2,266
120 0,579 1,159 1,741 2,207
130 0,5646 1,13 1,697 2,15
140 0,5508 1,102 1,655 2,097
Плотность газообразного хлора при различных температурах и давлении от 1,31 до 2,1 атм.
↓ t, °С | P, кПа → 133 160 186 213
-20 4,695 5,768
-10 4,446 5,389 6,366 7,389
0 4,255 5,138 6,036 6,954
10 4,092 4,933 5,783 6,645
20 3,945 4,751 5,565 6,385
30 3,809 4,585 5,367 6,154
40 3,682 4,431 5,184 5,942
50 3,563 4,287 5,014 5,745
60 3,452 4,151 4,855 5,561
70 3,347 4,025 4,705 5,388
80 3,248 3,905 4,564 5,225
90 3,156 3,793 4,432 5,073
100 3,068 3,687 4,307 4,929
110 2,985 3,587 4,189 4,793
120 2,907 3,492 4,078 4,665
130 2,832 3,397 3,972 4,543
140 2,761 3,319 3,87 4,426

Плотность жидкого хлора

Жидкий хлор может существовать в относительно узком температурном диапазоне, границы которого лежат от минус 100,5 до плюс 144°С (то есть от температуры плавления до критической температуры). Выше температуры 144°С хлор не перейдет в жидкое состояние ни при каком давлении. Плотность жидкого хлора в этом температурном интервале изменяется от 1717 до 573 кг/м 3 .

Плотность жидкого хлора при различных температурах
t, °С ρ, кг/м 3 t, °С ρ, кг/м 3
-100 1717 30 1377
-90 1694 40 1344
-80 1673 50 1310
-70 1646 60 1275
-60 1622 70 1240
-50 1598 80 1199
-40 1574 90 1156
-30 1550 100 1109
-20 1524 110 1059
-10 1496 120 998
0 1468 130 920
10 1438 140 750
20 1408 144 573

Удельная теплоемкость хлора

Удельная теплоемкость газообразного хлора C p в размерности кДж/(кг·К) в интервале температуры от 0 до 1200°С и нормальном атмосферном давлении может быть рассчитана по формуле:

где T — абсолютная температура хлора в градусах Кельвина.

Следует отметить, что при нормальных условиях удельная теплоемкость хлора имеет значение 471 Дж/(кг·К) и при нагревании увеличивается. Рост теплоемкости при температурах выше 500°С становится незначительным, и при высоких температурах удельная теплоемкость хлора практически не изменяется.

В таблице приведены результаты расчета удельной теплоемкости хлора по указанной выше формуле (погрешность расчета составляет около 1%).

Удельная теплоемкость газообразного хлора в зависимости от температуры
t, °С C p , Дж/(кг·К) t, °С C p , Дж/(кг·К)
0 471 250 506
10 474 300 508
20 477 350 510
30 480 400 511
40 482 450 512
50 485 500 513
60 487 550 514
70 488 600 514
80 490 650 515
90 492 700 515
100 493 750 515
110 494 800 516
120 496 850 516
130 497 900 516
140 498 950 516
150 499 1000 517
200 503 1100 517

При температуре близкой к абсолютному нулю хлор находится в твердом состоянии и имеет низкую величину удельной теплоемкости (19 Дж/(кг·К)). По мере увеличения температуры твердого Cl 2 его теплоемкость растет и достигает при минус 143°С величины 720 Дж/(кг·К).

Жидкий хлор имеет удельную теплоемкость 918…949 Дж/(кг·К) в интервале от 0 до -90 градусов Цельсия. По данным таблицы видно, что удельная теплоемкость жидкого хлора выше чем газообразного и при увеличении температуры снижается.

Теплопроводность хлора

В таблице представлены значения коэффициентов теплопроводности газообразного хлора при нормальном атмосферном давлении в интервале температуры от -70 до 400°С.

Коэффициент теплопроводности хлора при нормальных условиях составляет 0,0079 Вт/(м·град), что в 3 раза меньше чем у при тех же температуре и давлении. Нагревание хлора приводит к повышению его теплопроводности. Так, при температуре 100°С, значение этого физического свойства хлора увеличивается до 0,0114 Вт/(м·град).

Теплопроводность газообразного хлора
t, °С λ, Вт/(м·град) t, °С λ, Вт/(м·град)
-70 0,0054 50 0,0096
-60 0,0058 60 0,01
-50 0,0062 70 0,0104
-40 0,0065 80 0,0107
-30 0,0068 90 0,0111
-20 0,0072 100 0,0114
-10 0,0076 150 0,0133
0 0,0079 200 0,0149
10 0,0082 250 0,0165
20 0,0086 300 0,018
30 0,009 350 0,0195
40 0,0093 400 0,0207

Вязкость хлора

Коэффициент динамической вязкости газообразного хлора в интервале температуры 20…500°С можно приближенно вычислить по формуле:

где η T — коэффициент динамической вязкости хлора при заданной температуре T, К;
η T 0 — коэффициент динамической вязкости хлора при температуре T 0 =273 К (при н. у.);
С — константа Сюзерленда (для хлора С=351).

При нормальных условиях динамическая вязкость хлора равна 0,0123·10 -3 Па·с. При нагревании такое физическое свойство хлора, как вязкость, принимает более высокие значения.

Жидкий хлор имеет вязкость на порядок выше, чем газообразный. Например, при температуре 20°С динамическая вязкость жидкого хлора имеет величину 0,345·10 -3 Па·с и при росте температуры снижается.

Источники:

  1. Барков С. А. Галогены и подгруппа марганца. Элементы VII группы периодической системы Д. И. Менделеева. Пособие для учащихся. М.: Просвещение, 1976 — 112 с.
  2. Таблицы физических величин. Справочник. Под ред. акад. И. К. Кикоина. М.: Атомиздат, 1976 - 1008 с.
  3. Якименко Л. М., Пасманик М. И. Справочник по производству хлора, каустической соды и основных хлорпродуктов. Изд. 2-е, пер. и др. М.: Химия, 1976 — 440 с.

Министерство образования и науки РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное ГОСУДАРСТВЕННОЕ бюджетное ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

ИВАНОВСКИЙ ГОСУДАРСТВЕННЫЙ ХИМИКО-ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра ТП и МЭТ


Реферат

Хлор: свойства, применение, получение


Руководитель: Ефремов А.М.


Иваново 2015


Введение

Общие сведения по хлору

Применение хлора

Химические способы получения хлора

Электролиз. Понятие и сущность процесса

Промышленное получение хлора

Техника безопасности в хлорном производстве и охрана окружающей среды

Заключение


Введение

хлор химический элемент электролиз

В связи с масштабностью применения хлора в различных областях науки, промышленности, медицины и в быту, спрос на него в последнее время катастрофически возрос. Существует множество методик получения хлора лабораторными и промышленными методами, однако все они имеют больше недостатков, чем достоинств. Получение хлора, например, из соляной кислоты, являющейся побочным продуктом и отходом множества химических и иных производств или поваренной соли, добываемой в соляных месторождениях, процесс достаточно энергозатратный, вредный с точки зрения экологии и весьма опасный для жизни и здоровья.

В настоящее время весьма актуальна проблема разработки технологии получения хлора, которая исключала бы все вышеизложенные недостатки, а также обладала высоким выходом по хлору.


.Общие сведения по хлору


Хлор получен впервые в 1774 году К. Шееле взаимодействием соляной кислоты с пиролюзитом MnО2. Однако только в 1810 году Г. Дэви установил, что хлор - элемент и назвал его chlorine (от греч. chloros - желто-зеленый). В 1813 году Ж. Л. Гей-Люссак предложил для этого элемента название «Хлор».

Хлор - элемент VII группы периодической системы элементов Д. И. Менделеева. Молекулярная масса 70,906, атомная масса 35,453, атомный номер - 17, относится к семейству галогенов. При нормальных условиях свободный хлор, состоящий из двухатомных молекул, представляет собой зеленовато-желтый негорючий газ с характерным резким и раздражающим запахом. Он ядовит и вызывает удушье. Сжатый газообразный хлор при атмосферном давлении превращается в жидкость янтарного цвета при -34,05 °С, затвердевает при -101,6 °С и давлении 1 атм. Обычно хлор представляет собой смесь 75,53% 35Cl и 24,47% 37Cl. При нормальных условиях плотность газообразного хлора составляет 3,214 кг/м3, то есть он примерно в 2,5 раза тяжелее воздуха.

Химически хлор очень активен, непосредственно соединяется почти со всеми металлами (с некоторыми только в присутствии влаги или при нагревании) и с неметаллами (кроме углерода, азота, кислорода, инертных газов), образуя соответствующие хлориды, вступает в реакцию со многими соединениями, замещает водород в предельных углеводородах и присоединяется к ненасыщенным соединениям. Этим обусловлено большое разнообразие его применения. Хлор вытесняет бром и иод из их соединений с водородом и металлами. Щелочные металлы в присутствии следов влаги взаимодействуют с хлором с воспламенением, большинство металлов реагирует с сухим хлором только при нагревании. Сталь, а также некоторые металлы стойки в атмосфере сухого хлора в условиях невысоких температур, поэтому их используют для изготовления аппаратуры и хранилищ для сухого хлора. Фосфор воспламеняется в атмосфере хлора, образуя РCl3, а при дальнейшем хлорировании - РСl5. Сера с хлором при нагревании дает S2Cl2, SCl2 и другие SnClm. Мышьяк, сурьма, висмут, стронций, теллур энергично взаимодействуют с хлором. Смесь хлора с водородом горит бесцветным или желто-зеленым пламенем с образованием хлористого водорода (это цепная реакция). Максимальная температура водородно-хлорного пламени 2200°С. Смеси хлора с водородом, содержащие от 5,8 до 88,5% Н2, взрывоопасны и могут взрываться от действия света, электрической искры, нагревания, от присутствия некоторых веществ, например оксидов железа.

С кислородом хлор образует оксиды: Cl2О, СlO2, Cl2О6, Сl2О7, Cl2О8, а также гипохлориты (соли хлорноватистой кислоты), хлориты, хлораты и перхлораты. Все кислородные соединения хлора образуют взрывоопасные смеси с легко окисляющимися веществами. Оксиды хлора малостойки и могут самопроизвольно взрываться, гипохлориты при хранении медленно разлагаются, хлораты и перхлораты могут взрываться под влиянием инициаторов. Хлор в воде гидролизуется, образуя хлорноватистую и соляную кислоты: Cl2 + Н2О? НClО + НCl. Образующийся желтоватый раствор часто называют хлорной водой. При хлорировании водных растворов щелочей на холоду образуются гипохлориты и хлориды: 2NaOH + Cl2= NaClO + NaCl + Н2О, а при нагревании - хлораты. Хлорированием сухого гидрооксида кальция получают хлорную известь. При взаимодействии аммиака с хлором образуется треххлористый азот. При хлорировании органических соединений хлор либо замещает водород, либо присоединяется по кратным связям, образуя различные хлорсодержащие органических соединения. С других галогенами хлор образует межгалогенные соединения. Фториды хлора ClF, ClF3, ClF3 очень реакционноспособны; например, в атмосфере ClF3 стеклянная вата самовоспламеняется. Известны соединения хлора с кислородом и фтором - оксифториды хлора: ClO3F, ClO2F3, ClOF, ClOF3 и перхлорат фтора FClO4.

Хлор встречается в природе только в виде соединений. Среднее содержание его в земной коре 1,7·10-2% по массе. Основную роль в истории хлора в земной коре играет водная миграция. В виде иона Cl- он содержится в Мировом океане (1,93%), подземных рассолах и соляных озерах. Число собственных минералов (преимущественно природных хлоридов) 97, главный из них галит NaCl (Каменная соль). Известны также крупные месторождения хлоридов калия и магния и смешанных хлоридов: сильвин КCl, сильвинит (Na,K)Cl, карналит KCl·MgCl2·6H2O, каинит KCl·MgSO4·3H2O, бишофит MgCl2·6H2O. В истории Земли большое значение имело поступление содержащегося в вулканических газах НCl в верхние части земной коры.


Стандарты качества хлора

Наименование показателя ГОСТ 6718-93Высший сортПервый сортОбъемная доля хлора, не менее, %99,899,6Массовая доля воды, не более, %0,010,04Массовая доля треххлористого азота, не более, %0,0020,004Массовая доля нелетучего остатка, не более, %0,0150,10

Хранение и транспортировка хлора

Производимый всевозможными методами хлор хранится в специальных «танках» или закачивается в стальные цилиндрические (объёмом 10-250 м3) и шаровые (объёмом 600-2000 м3) баллоны под давлением собственных паров 18 кгс/см2. Максимальные объемы хранения составляют 150 тонн. Баллоны с жидким хлором под давлением имеют специальную окраску - защитный цвет. В случае разгерметизации баллона с хлором происходит резкий выброс газа с концентрацией, превышающей смертельную в несколько раз. Следует отметить, что при длительной эксплуатации баллонов с хлором в них накапливается чрезвычайно взрывчатый треххлористый азот, и поэтому время от времени баллоны с хлором должны проходить плановую промывку и очистку от хлорида азота. Перевозят хлор в контейнерах, железнодорожных цистернах, баллонах, которые являются временным его хранилищем.


2.Применение хлора


Хлор потребляется прежде всего химической промышленностью для производства различных органических хлорпроизводных, идущих для получения пластических масс, синтетических каучуков, химических волокон, растворителей, инсектицидов и т.п. В настоящее время более 60% мирового производства хлора используется для органического синтеза. Помимо этого хлор используют для производства соляной кислоты, хлорной извести, хлоратов и других продуктов. Значительные количества хлора идут в металлургию для хлорирования при переработке полиметаллических руд, извлечения золота из руд, а также его используют в нефтеперерабатывающей промышленности, в сельском хозяйстве, в медицине и санитарии, для обезвреживания питьевой и сточных вод, в пиротехнике и ряде других областей народного хозяйства. В результате развития сфер использования хлора, главным образом благодаря успехам органического синтеза, мировое производство хлора составляет более 20 млн. т/год.

Основные примеры применения и использования хлора во всевозможных отраслях науки, промышленности и бытовых нужд:

1.в производстве поливинилхлорида, пластикатов, синтетического каучука, из которых изготавливают: изоляцию для проводов, оконный профиль, упаковочные материалы, одежду и обувь, линолеум и грампластинки, лаки, аппаратуру и пенопласты, игрушки, детали приборов, строительные материалы. Поливинилхлорид производят полимеризацией винилхлорида, который сегодня чаще всего получают из этилена сбалансированным по хлору методом через промежуточный 1,2-дихлорэтан .

CH2=CH2+Cl2=>CH2Cl-CH2ClCl-CH2Cl=> CH2=CHCl+HCl


1)в качестве отбеливающего средства (хотя не сам хлор «отбеливает», а атомарный кислород, который образуется при распаде хлорноватистой кислоты по реакции: Cl2 + H2O ? HCl + HClO ? 2HCl + O*).

2)в производстве хлорорганических инсектицидов - веществ, убивающих вредных для посевов насекомых, но безопасных для растений (альдрин, ДДТ, гексахлоран). Один из самых важных инсектицидов - гексахлорциклогексан (C6H6Cl6).

)используется как боевое отравляющее вещество, а также для производства других боевых отравляющих веществ: иприт (C4H8Cl2S), фосген (CCl2O).

)для обеззараживания воды - «хлорирования». Наиболее распространённый способ обеззараживания питьевой воды основан на способности свободного хлора и его соединений угнетать ферментные системы микроорганизмов катализирующие окислительно-восстановительные процессы . Для обеззараживания питьевой воды применяют: хлор (Cl2), двуокись хлора (ClO2), хлорамин (NH2Cl) и хлорную известь (Ca(Cl)OCl).

)в пищевой промышленности зарегистрирован в качестве пищевой добавки E925.

)в химическом производстве каустической соды (NaOH) (применяется в производстве искусственного шелка, в мыловаренной промышленности), соляной кислоты (HCl), хлорной извести, бертолетовой соли (KClO3), хлоридов металлов, ядов, лекарств, удобрений.

)в металлургии для производства чистых металлов: титана, олова, тантала, ниобия .


TiO2 + 2C + 2Cl2 => TiCl4 + 2CO;

TiCl4 + 2Mg => 2MgCl2 + Ti (при Т=850°С)


)в качестве индикатора солнечных нейтрино в хлор-аргонных детекторах (Идея «хлорного детектора» для регистрации солнечных нейтрино была предложена известным советским физиком академиком Б. Понтекорво и осуществлена американским физиком Р. Девисом и его сотрудникми. Уловив нейтрино ядро изотопа хлора с атомным весом 37, превращается в ядро изотопа аргона-37, при этом образуется один электрон, который можно зарегистрировать.).

Многие развитые страны стремятся ограничить использование хлора в быту, в том числе потому, что при сжигании хлорсодержащего мусора образуется значительное количество диоксинов (глобальные экотоксиканты, обладающие мощным мутагенным , иммунодепрессантным , канцерогенным, тератогенным и эмбриотоксическим действием. Они слабо расщепляются и накапливаются как в организме человека, так и в биосфере планеты, включая воздух, воду, пищу).


3.Химические способы получения хлора


Ранее было распространено производство хлора химическим путем по способам Вельдона и Дикона. В этих процессах хлор получали окислением хлористого водорода, образовывающегося в качестве побочного продукта в производстве сульфата натрия из поваренной соли действием серной кислоты.

реакция протекающая при использовании метода Вельдона:

4НСl + МnO2 =>МnСl2+ 2Н2O + Сl2


реакция протекающая при использовании метода Дикона:


НСl + O2 =>2Н2O + 2Сl2


В диконовском процессе в качестве катализатора использовали хлорную медь, 50%-ным раствором которой (иногда с добавкой NaCl) пропитывали пористый керамический носитель. Оптимальная температура реакции на таком катализаторе была обычно в пределах 430490°. Этот катализатор легко отравляется соединениями мышьяка, с которыми образует неактивный арсенат меди, а также двуокисью и трехокисью серы. Присутствие в газе даже небольших количеств паров серной кислоты вызывает резкое уменьшение выхода хлора в результате последовательно идущих реакций:


H2SO4 => SO2 + 1/2O2 + H2O+ С12 + 2Н2O => 2НCl + H2SO4

С12 + Н2O => 1/2O2 + 2НСl


Таким образом, серная кислота является катализатором, способствующим обратному превращению Сl2 в НСl. Поэтому хлористоводородный газ до окисления на медном катализаторе должен подвергаться тщательной очистке от примесей, снижающих выход хлора.

Установка Дикона состояла из подогревателя газа, газового фильтра и контактного аппарата стального цилиндрического кожуха, внутри которого находились два концентрически расположенных керамических цилиндра с отверстиями; кольцевое пространство между ними заполнено катализатором. Хлористый водород окисляли воздухом, поэтому хлор получался разбавленным. В контактный аппарат подавали смесь, содержавшую 25 объемн.% НСl и 75 объемн.% воздуха (~16% O2), а газ, выходивший из аппарата, содержал около 8% С12, 9% НСl, 8% водяного пара и 75% воздуха. Такой газ, после отмывки из него НСl и осушки серной кислотой, использовали обычно для получения хлорной извести.

Реставрация процесса Дикона в настоящее время базируется на окислении хлористого водорода не воздухом, а кислородом, что позволяет получать концентрированный хлор при применении высокоактивных катализаторов. Образующуюся хлорокислородную смесь отмывают от остатков НС1 последовательно 36- и 20%-ной соляной кислотой и осушают серной кислотой. Затем хлор сжижают, а кислород возвращают в процесс. Отделение хлора от кислорода производят также, поглощая хлор под давлением 8 атм хлористой серой, которую затем регенерируют, получая 100%-ный хлор:


Сl2 + S2CI2 S2Cl4


Используют низкотемпературные катализаторы, например, двухлористую медь, активированную солями редкоземельных металлов, что дает возможность вести процесс даже при 100°С и поэтому резко увеличить степень превращения НСl в Сl2. На окисно-хромовом катализаторе сжигание НСl в кислороде производят при 340480°C. Описано применение при 250420°C катализатора из смеси V2O5 с пиросульфатами щелочных металлов и активаторами на силикагеле. Изучены механизм и кинетика этого процесса и установлены оптимальные условия его осуществления, в частности в псевдоожиженном слое.

Окисление хлористого водорода кислородом производят также с помощью расплавленной смеси FeCl3 + КСl в две стадии, осуществляемые в отдельных реакторах. В первом реакторе происходит окисление хлорного железа с образованием хлора:

2FeCl3 + 1 O2 => Fe3O3 + ЗСl2


Во втором реакторе хлорное железо регенерируется из окиси железа хлористым водородом:

O3 + 6HCI = 2FeCl3 + 3H20


Для уменьшения давления пара хлорного железа добавляют хлористый калий. Этот процесс предложено осуществлять также в одном аппарате, в котором контактная масса, состоящая из Fe2O3, КС1 и хлорида меди, кобальта или никеля, нанесенных на инертный носитель, перемещается сверху вниз аппарата. Вверху аппарата она проходит горячую зону хлорирования, где Fe2Оз превращается в FeCl3, взаимодействуя с НСl, находящимся в потоке идущего снизу вверх газа. Затем контактная масса опускается в зону охлаждения, где под действием кислорода образуется элементарный хлор, a FeCl3 переходит в Fe2O3. Окисленная контактная масса снова возвращается в зону хлорирования.

Подобное же косвенное окисление НСl в Cl2 осуществляется по схеме:


2НС1 + MgО = MgCl2 + Н2O + 1/2O2 = MgO + Cl2


Предложено одновременно получать хлор и серную кислоту, пропуская через ванадиевый катализатор при 400600°C газ, содержащий НСl, O2 и большой избыток SO2. Затем из газа конденсируют H2SO4 и HSO3Cl и абсорбируют SO3 серной кислотой хлор остается в газовой фазе. HSO3Cl гидролизуется и выделяющийся НС1 возвращают в процесс.

Еще более эффективно окисление проводится такими окислителями, как РbО2, КМnО4, КСlO3, К2Сr2О7 :

2KMnO4 + 16HCl => 2KCl + 2MnCl2 + 5Cl2^ +8H2O


Хлор может быть получен и окислением хлоридов. Например, при взаимодействии NaCl и SO3 идут реакции:


NaCl + 2SO3 = 2NaSO3Cl

NaSO3Cl = Cl2 + SO2 + Na2SO4


Распад NaSO3Cl происходит при 275°C. Смесь газов SO2 и С12 можно разделить, поглощая хлор SO2Cl2 или ССl4 или подвергая ее ректификации, в результате которой получается азеотропная смесь, содержащая 88 мол. % Cl2 и 12 мол. % SO2. Азеотропную смесь можно далее разделить, переводя SO2 в SO2C12 и отделяя избыточный хлор, a SO2Cl2 разлагая при 200° на SO2 и Сl2, которые добавляют к смеси, направляемой на ректификацию.

Хлор можно получить окислением хлорида или хлористого водорода азотной кислотой, а также двуокисью азота:


ЗНСl + HNO3 => Сl2 + NOCl + 2Н2O


Ещё один способ получения хлора - разложение хлористого нитрозила, которое может быть достигнуто его окислением:


NOCl + O2 = 2NO2 + Сl2


Также для получения хлора предложено, например, окислять NOCl 75%-ной азотной кислотой:


2NOCl + 4HNO3 = Сl2 + 6NO2 + 2Н2O

Смесь хлора и двуокиси азота разделяют, перерабатывая NO2 в слабую азотную кислоту, используемую затем для окисления НСl в первой стадии процесса с образованием Сl2 и NOCl. Основным затруднением при осуществлении этого процесса в промышленных масштабах является устранение коррозии. В качестве материалов для аппаратуры применяют керамику, стекло, свинец, никель, пластмассы. По этому методу в США в 19521953 гг. работала установка производительностью 75 т хлора в сутки.

Разработан циклический способ получения хлора окислением хлористого водорода азотной кислотой без образования хлористого нитрозила по реакции:


2НСl + 2HNO3 = Сl2 + 2NO2 + 2Н2O


Процесс идет в жидкой фазе при 80°C, выход хлора достигает 100%, NO2 получается в жидком виде.

В последствии эти способы были полностью вытеснены электрохимическими, но в настоящее время химические способы получения хлора вновь возрождаются на новой технической базе. Все они основаны на прямом или косвенном окислении HCl (или хлоридов), причем наиболее распространенным окислителем является кислород воздуха.


Электролиз. Понятие и сущность процесса


Электролиз - совокупность электрохимических окислительно-восстановительных процессов, которые происходят на электродах во время прохождения постоянного электрического тока через расплав или раствор с погруженными в него электродами.

Рис. 4.1. Процессы, протекающие при электролизе. Схема электролизной ванны: 1 - ванна, 2 - электролит, 3 - анод, 4 - катод, 5 - источник питания


Электродами могут служить любые материалы, проводящие электрический ток. В основном применяют металлы и сплавы, из неметаллов электродами могут служить, например, графитовые стержни (или углерод). Реже в качестве электрода используют жидкости. Электрод, заряженный положительно - анод. Электрод, заряженный отрицательно - катод. При электролизе происходит окисление анода (он растворяется) и восстановление катода. Именно поэтому анод следует брать таким, чтобы его растворение не повлияло на химический процесс, протекающий в растворе или расплаве. Такой анод называют инертным электродом. В качестве инертного анода можно взять графит (углерод) или платину. В качестве катода можно взять металлическую пластину (она не будет растворяться). Подойдёт медь, латунь, углерод (или графит), цинк, железо, алюминий, нержавейка.

Примеры электролиза расплавов:

Примеры электролиза растворов солей:

(на аноде окисляются анионы Сl?, а не кислород O?II молекул воды, так как электроотрицательность хлора меньше, чем кислорода, и следовательно, хлор отдает электроны легче, чем кислород)

Электролиз воды проводится всегда в присутствии инертного электролита (для увеличения электропроводности очень слабого электролита - воды):

В зависимости от инертного электролита электролиз проводится в нейтральной, кислотной или щелочной среде. При выборе инертного электролита необходимо учесть, что никогда не восстанавливаются на катоде в водном растворе катионы металлов, являющихся типичными восстановителями (например Li+, Cs+, K+, Ca2+, Na+, Mg2+, Al3+) и никогда не окисляется на аноде кислород O?II анионов оксокислот с элементом в высшей степени окисления (например ClO4?, SO42?, NO3?, PO43?, CO32?, SiO44?, MnO4?), вместо них окисляется вода.

Электролиз включает два процесса: миграцию реагирующих частиц под действием электрического поля к поверхности электрода и переход заряда с частицы на электрод или с электрода на частицу. Миграция ионов определяется их подвижностью и числами переноса. Процесс переноса нескольких электрических зарядов осуществляется, как правило, в виде последовательности одноэлектронных реакций, то есть постадийно, с образованием промежуточных частиц (ионов или радикалов), которые иногда существуют некоторое время на электроде в адсорбированном состоянии .

Скорости электродных реакций зависят от:

состава электролита

концентрации электролита

материала электродов

электродного потенциала

температуры

гидродинамических условий.

Мерой скорости реакций служит плотность тока. Это векторная физическая, модуль которой определяется соотношением силы тока (количество переносимых электрических зарядов в единицу времени) в проводнике к площади поперечного сечения.

Законы электролиза Фарадея являются количественными соотношениями, основанными на электрохимических исследованиях, и помогают определить массу образующихся при электролизе продуктов. В наиболее общем виде законы формулируются следующим образом:

)Первый закон электролиза Фарадея: масса вещества, осаждённого на электроде при электролизе, прямо пропорциональна количеству электричества, переданного на этот электрод. Под количеством электричества имеется в виду электрический заряд, измеряемый, как правило, в кулонах.

2)Второй закон электролиза Фарадея: для данного количества электричества (электрического заряда) масса химического элемента, осаждённого на электроде, прямо пропорциональна эквивалентной массе элемента. Эквивалентной массой вещества является его молярная масса, делённая на целое число, зависящее от химической реакции, в которой участвует вещество .

В математическом виде законы Фарадея можно представить следующим образом:



где m - масса осаждённого на электроде вещества в граммах,- полный электрический заряд, прошедший через вещество,= 96 485,33(83) Кл·моль?1 - постоянная Фарадея,- молярная масса вещества (Например, молярная масса воды H2O = 18 г/моль),- валентное число ионов вещества (число электронов на один ион).

Заметим, что M/z - это эквивалентная масса осаждённого вещества.

Для первого закона Фарадея M, F и z являются константами, так что чем больше величина Q, тем больше будет величина m.

Для второго закона Фарадея Q, F и z являются константами, так что чем больше величина M/z (эквивалентная масса), тем больше будет величина m.

В простейшем случае постоянного тока электролиза приводит к:

В более сложном случае переменного электрического тока полный заряд Q тока I(?) суммируется за время ? :



где t - полное время электролиза.

В промышленности процесс электролиза проводится в специальных аппаратах - электролизерах.


Промышленное получение хлора


В настоящее время хлор, главным образом, производят электролизом водных растворов, а именно одним из -трех электрохимических методов, два из которых представляют собой электролиз с твердым катодом: диафрагменный и мембранный методы, другой электролиз с жидким ртутным катодом (ртутный метод производства). Эти методы дают хлор приблизительно одной и той же чистоты. В мировой практике используются все три метода получения хлора, однако самым легким и удобным способом является электролиз с ртутным катодом, но этот метод наносит значительный вред окружающей среде в результате испарения и утечек металлической ртути и хлора. Предпочтительнее использовать мембранный процесс, так как он более экономичен, менее опасен для окружающей среды и дает возможность получить конечный продукт более высокого качества.

Сырьем для электролитического производства хлора служат, главным образом, растворы поваренной соли NaCl, получаемые растворением твердой соли, или же природные рассолы. Имеются три типа месторождений соли: ископаемая соль (около 99% запасов); соляные озера с донными отложениями самосадочной соли (0,77%); остальное - подземные расколы. Растворы поваренной соли независимо от пути их получения содержат примеси, ухудшающие процесс электролиза. Особо неблагоприятное влияние при электролизе с твёрдым катодом оказывают катионы кальция Ca2+, Mg2+ и анионы SO42- , а при электролизе с жидким катодом - примеси соединений, содержащих тяжелые металлы, например хром, ванадий, германий и молибден.

Кристаллическая соль для хлорного электролиза должна иметь следующий состав (%): хлорид натрия не менее 97,5; Mg2+ не более 0,05; нерастворимого осада не более 0,5; Ca2+ не более 0,4; K+ не более 0,02; SO42- не более 0,84; влажность не более 5; примесь тяжелых металлов (определяемая амальгамной пробой см3 H2) не более 0,3. Очистка рассолов производится раствором соды (Na2CO3) и известковым молоком (взвесь суспензии Ca(OH)2 в воде). Помимо химической очистки, растворы освобождаются от механических примесей отстаиванием и фильтрацией.

Электролиз растворов поваренной соли производится в ваннах с твердым железным (или стальным) катодом и с диафрагмами и мембранами, в ваннах с жидким ртутным катодом. Промышленные электролизеры, применяемые для оборудования современных крупных хлорных цехов, должны иметь высокую производительность, простую конструкцию, быть компактными, работать надежно и устойчиво.

Электролиз протекает по схеме:


MeCl + H2O => MeOH + Cl2 + H2,


где Me щелочной металл.

При электрохимическом разложении поваренной соли в электролизерах с твердыми электродами протекают следующие основные, обратимые и необратимые ионные реакции:

диссоциация молекул поваренной соли и воды (идет в электролите)


NaCl-Na++Cl- -H++OH-


Окисление иона хлора (на аноде)


С1- - 2е- => С12


восстановление иона водорода и молекул воды (на катоде)


Н+ - 2е- => Н2

Н2O - 2е - => Н2 + 2OН-


Ассоциация ионов в молекулу гидроксида натрия (в электролите)


Na+ + OH- - NaOH


Полезными продуктами являются гидроксид натрия, хлор и водород. Все они выводятся из электролизера раздельно.


Рис. 5.1. Схема диафрагменного электролизера


Полость электролизера с твердым катодом (рис. 3) разделена пористой перегородкой - диафрагмой - на катодное и анодное пространство, в которых соответственно размещены катод и анод электролизера. Поэтому электролизер часто называют «диафрагменным», а метод получения - диафрагменным электролизом.

Первые промышленные электролизеры работали в периодическом режиме. Продукты электролиза в них разделялись цементной диафрагмой. В дальнейшем были созданы электролизеры, в которых для разделения продуктов электролиза служили перегородки в виде колокола. На следующем этапе появились электролизеры с проточной диафрагмой. В них принцип противотока объединялся с использованием разделительной диафрагмы, которую изготавливали из асбестового картона. Далее был открыт способ получения диафрагмы из асбестовой пульпы, заимствованный из технологии бумажной промышленности. Этот способ позволил разработать конструкции электролизеров на большую токовую нагрузку с неразборным компактным пальцевым катодом. Для увеличения срока службы асбестовой диафрагмы предложено в ее состав вводить в качестве покрытия или связи некоторые синтетические материалы. Предложено также диафрагмы целиком изготовлять из новых синтетических материалов. Имеются данные, что такие комбинированные асбосинтетические или специально изготовленные синтетические диафрагмы имеют срок службы до 500 суток. Разрабатываются также специальные ионообменные диафрагмы, которые позволяют получать чистую каустическую соду с очень малым содержанием хлорида натрия. Действие таких диафрагм основано на использовании их селективных свойств для прохождения различных ионов.

Места контактов токоподводов к графитовым анодам в ранних конструкциях выносили из полости электролизера наружу. В дальнейшем были разработаны способы защиты контактных частей анодов, погруженных в электролит. С использованием этих технических приемов были созданы промышленные электролизеры с нижним токоподводом, в которых анодные контакты располагаются в полости электролизера. Они и применяются повсеместно в настоящее время для производства хлора и каустика на твердом катоде.

В анодное пространство диафрагменного электролизера непрерывно поступает поток насыщенного раствора поваренной соли (очищенного рассола). В результате электрохимического процесса на аноде за счет разложения поваренной соли выделяется хлор, а на катоде за счет разложения воды - водород. Хлор и водород выводятся из электролизера, не смешиваясь, раздельно. При этом прикатодная зона обогащается гидроксидом натрия. Раствор из прикатодной зоны, называемый электролитическим щелоком, содержащий неразложившуюся поваренную соль (приблизительно половину от поданного с рассолом количества) и гидроксид натрия, непрерывно выводится из электролизера. На следующей стадии электролитический щелок упаривают и доводят содержание в нем NaOH до 42- 50% в соответствии со стандартом. Поваренная соль и сульфат натрия при повышении концентрации гидроксида натрия выпадают в осадок.

Раствор NaOH декантируют от кристаллов и передают в качестве готового продукта на склад или на стадию плавки каустика для получения твердого продукта. Кристаллическую поваренную соль (обратную соль) возвращают на электролиз, приготавливая из нее так называемый обратный рассол. Из него во избежание накапливания сульфата в растворах перед приготовлением обратного рассола извлекают сульфат. Убыль поваренной соли возмещают добавкой свежего рассола, полученного подземным выщелачиванием соляных пластов или растворением твердой поваренной соли. Свежий рассол перед смешиванием его с обратным рассолом очищают от механических взвесей и значительной части ионов кальция и магния. Полученный хлор отделяется от паров воды, компримируется и передается либо непосредственно потребителям, либо на сжижение хлора. Водород отделяется от воды, компримируется и передается потребителям.

В мембранном электролизере протекают те же химические реакции, что и в диафрагменном электролизере. Вместо пористой диафрагмы используют катионную мембрану (Рис. 5).


Рис. 5.2. Схема мембранного электролизера

Мембрана препятствует проникновению ионов хлора в католит (электролит в катодном пространстве), за счет чего непосредственно в электролизере можно получить каустическую соду почти без соли, концентрацией от 30 до 35%. Поскольку исчезает необходимость отделять соль, выпаривание обеспечивает получение 50%-ной коммерческой каустической соды значительно проще и при меньших капиталовложениях и энергозатратах. Поскольку каустическая сода в мембранном процессе значительно большей концентрации, то в качестве катода используют дорогостоящий никель.


Рис. 5.3. Схема ртутного электролизера


Суммарная реакция разложения поваренной соли в ртутных электролизерах такая же, как и в диафрагменных:


NaCl+Н2O => NaOH + 1/2Сl2+ 1/2Н2


Однако здесь она проходит в две стадии и каждая в отдельном аппарате: электролизере и разлагателе. Они конструктивно объединены между собой и называются электролитической ванной, а иногда ртутным электролизером.

На первой стадии процесса - в электролизере - проходит электролитическое разложение поваренной соли (в электролизер подается ее насыщенный раствор) с получением на аноде хлора, а на ртутном катоде - амальгамы натрия, по следующей реакции:


NaCl + nHg => l/2Cl2 + NaHgn


В разлагателе проходит вторая стадия процесса, в который под действием воды амальгама натрия переходит в гидроксид натрия и ртуть:


NaHgn + Н2O => NaOH +1/2H2+nHg


Из всей соли, поданной в электролизер с рассолом, в реакцию (2) вступает лишь 15-20% от поданного количества, а остальная соль вместе с водой выходит из электролизера в виде хлоранолита - раствора поваренной соли в воде, содержащего 250-270 кг/м3 NaCl, насыщенного хлором. В разла- гатель подается «крепкая амальгама», выходящая из электролизера, и вода.

Электролизер во всех имеющихся конструкциях изготавливается в виде длинного и сравнительно узкого, слегка наклонного стального желоба, по дну которого самотеком течет тонкий слой амальгамы, являющийся катодом, а сверху анолит. Рассол и слабая амальгама подаются с верхнего приподнятого края электролизера через «входной карман».

Крепкая амальгама вытекает с нижнего конца электролизера через «выходной карман». Хлор и хлоранолит совместно выходят через патрубок, также расположенный у нижнего конца электролизера. Над всем зеркалом потока амальгамы или катодом на расстоянии 3-5 мм от катода подвешены аноды. Сверху электролизер перекрыт крышкой.

Распространены два типа разлагателей: горизонтальные и вертикальные. Первые изготавливают в виде стального наклонного желоба той же длины, что и электролизер. По дну разлагателя, устанавливаемого с небольшим наклоном, течет поток амальгамы. В этот поток погружена насадка разлагателя, изготавливаемая из графита. Противотоком движется вода. В результате разложения амальгамы вода насыщается каустиком. Раствор каустика вместе с водородом выходит из разлагателя через патрубок в днище, а бедная амальгама или ртуть насосом перекачивается в карман электролизера.

В комплект электролизной ванны кроме электролизера, разлагателя, карманов и переточных трубопроводов входит ртутный насос. Используются насосы двух типов. В тех случаях, когда ванны оборудованы вертикальным разлагателем или когда разлагатель установлен под электролизером, используются погружные центробежные насосы обычного типа, опущенные в разлагатель. У ванн, у которых разлагатель установлен рядом с электролизером, амальгаму перекачивают конусным роторным насосом оригинального типа.

Все стальные части электролизера, соприкасающиеся с хлором или хлоранолитом, защищают покрытием из вулканизированной резины особой марки (гуммирование). Защитный слой резины не является абсолютно стойким. Со временем он хлорируется, от действия температуры становится хрупким и растрескивается. Периодически защитный слой возобновляют. Все остальные части электролизной ванны: разлагатель, насос, перетоки - делают из незащищенной стали, так как ни водород, ни раствор каустика ее не корродируют.

В настоящее время в ртутном электролизере наиболее распространены графитовые аноды. Однако на замену им приходят ОРТА.


6.Техника безопасности в хлорном производстве
и охрана окружающей среды

Опасность для персонала в производстве хлора определяется высокой токсичностью хлора и ртути, возможностью образования в аппаратуре взрывоопасных газовых смесей хлора и водорода, водорода и воздуха, а также растворов треххлористого азота в жидком хлоре, применением в производстве электролизеров - аппаратов, находящихся под повышенным электрическим потенциалом относительно земли, свойствами едкой щелочи, вырабатываемой в этом производстве.

Вдыхание воздуха, содержащего 0,1 мг/л хлора в течение 30- 60 мин, опасно для жизни. Вдыхание воздуха, содержащего более 0,001 мг/л хлора, раздражает дыхательные пути. Предельно допустимая концентрация (ПДК) хлора в воздухе населенных пунктов: среднесуточная 0,03 мг/м3, максимальная разовая 0,1 мг/м3, в воздухе рабочей зоны производственных помещений составляет 1 мг/м3, порог восприятия запаха 2 мг/м3. При концентрации 3-6 мг/м3 ощущается отчетливый запах, происходит раздражение (покраснение) глаз и слизистых оболочек носа, при 15 мг/м3 - раздражение носоглотки, при 90 мг/м3 - интенсивные приступы кашля. Воздействие 120 - 180 мг/м3 в течение 30-60 минут опасно для жизни, при 300 мг/м3возможен летальный исход, концентрация 2500 мг/м3 приводит к гибели в течение 5 минут, при концентрации 3000 мг/м3 летальный исход наступает после нескольких вдохов. Максимально допустимая концентрация хлора для фильтрующих промышленных и гражданских противогазов составляет 2500 мг/м3.

Наличие хлора в воздухе определяют приборами химической разведки: ВПХР, ППХР, ПХР-МВ с использованием индикаторных трубок ИТ-44 (розовая окраска, порог чувствительности 5 мг/м3), ИТ-45 (оранжевая окраска), аспираторами АМ-5, АМ-0055, АМ-0059, НП-3М с индикаторными трубками на хлор, универсальным газоанализатором УГ-2 с диапазоном измерения 0-80 мг/м3, газосигнализатором «Колион-701» в диапазоне 0-20 мг/м3. На открытом пространстве - приборами СИП «КОРСАР-Х». В закрытом помещении - приборами СИП «ВЕГА-М». Для защиты от хлора при неисправностях или аварийных ситуациях всё находящиеся в цехах люди должны иметь при себе и своевременно применять противогазы марок «В» или «БКФ» (кроме цехов ртутного электролиза), а также защитную спецодежду: суконные или прорезиненные костюмы, резиновые сапоги и рукавицы. Коробки противогазов против хлора должны быть окрашены в желтый цвет.

Ртуть более ядовита, чем хлор. Предельно допустимая концентрация ее паров в воздухе составляет 0,00001 мг/л. Она поражает организм человека при вдыхании и при попадании на кожу, а также при соприкосновении с амальгамированными предметами. Пары и брызги ее адсорбируются (поглощаются) одеждой, кожей, зубами. В то же время ртуть легко испаряется при температуре; имеющейся в цехе электролиза, и концентрация ее паров в воздухе намного превышает предельно допустимую. Поэтому цехи электролиза с жидким катодом оборудуют мощной вентиляцией, которая при нормальной работе обеспечивает в атмосфере цеха допустимый уровень концентрации паров ртути. Однако этого недостаточно для безопасной работы. Еще необходимо соблюдать так называемую ртутную дисциплину: выполнять правила обращения с ртутью. Следуя им, персонал до начала работы проходит через санпропускник, в чистом отделении которого оставляет домашнюю одежду и одевает свежевыстиранное белье, являющееся спецодеждой. В конце смены верхняя спецодежда и грязное белье оставляются в грязном отделении санпропускника, а работающие принимают душ, чистят зубы и в чистом отделении санпропускника одевают домашние вещи.

В цехах, в которых работают с хлором и ртутью, следует пользоваться противогазом марки «Г» (коробка противогаза окрашена в черный и желтый цвета) и резиновыми перчатками., Правила «ртутной дисциплины» предусматривают, что работа с ртутью и амальгамированными поверхностями должна производиться только под слоем воды; пролитая ртуть должна тотчас же смываться в канализацию, где имеются ртутные ловушки.

Для окружающей среды представляют опасность выбросы хлора и паров ртути в атмосферу, сбросы в сточные воды солей ртути и капельной ртути, соединений, содержащих активный хлор, и отравление почвы ртутными шламами. Хлор в атмосферу попадает при авариях, с вентиляционными выбросами и абгазами из различных аппаратов. Пары ртути выносятся с воздухом из вентиляционных систем. Норма содержания хлора в воздухе при выбросе в атмосферу 0,03 мг/м3. Эта концентрация может быть достигнута, если применять щелочную многоступенчатую промывку абгазов. Норма содержания ртути в воздухе при выбросах в атмосферу 0,0003 мг/м3, а в стоках при сливе в водоемы 4 мг/м3.

Нейтрализуют хлор следующими растворами:

известковым молоком, для чего 1 весовую часть гашеной извести заливают 3 частями воды, тщательно перемешивают, затем сверху сливают известковый раствор (например, 10 кг гашеной извести + 30 литров воды);

5%-ным водным раствором кальцинированной соды, для чего 2 весовых части кальцинированной соды растворяют при перемешивании с 18 частями воды (например, 5 кг кальцинированной соды + 95 литров воды);

5%-ным водным раствором едкого натра, для чего 2 весовых части едкого натра растворяют при перемешивании с 18 частями воды (например, 5 кг. едкого натра + 95 литров воды).

При утечке газообразного хлора для погашения паров распыляют воду. Норма расхода воды не нормируется.

При разливе жидкого хлора место разлива ограждают земляным валом, заливают известковым молоком, раствором кальцинированной соды, едкого натра, либо водой. Для обезвреживания 1 тонны жидкого хлора необходимо 0,6-0,9 тонны воды или 0,5-0,8 тонны растворов. Для нейтрализации 1 тонны жидкого хлора необходимо 22-25 тонн растворов или 333-500 тонн воды.

Для распыления воды или растворов применяют поливомоечные и пожарные машины, авторазливочные станции (АЦ, ПМ-130, АРС-14, АРС-15), а также имеющиеся на химически опасных объектах гидранты и спецсистемы.


Заключение


Поскольку объемы хлора, получаемого лабораторными методами ничтожно малы в сравнении с постоянно растущим спросом на данный продукт, проводить по ним сравнительный анализ не имеет смысла.

Из электрохимических методов производства самым легким и удобным является электролиз с жидким (ртутным) катодом, однако этот метод не лишен недостатков. Он наносит существенный вред окружающей среде в результате испарения и утечек металлической ртути и газообразного хлора.

Электролизеры с твёрдым катодом исключают опасность загрязнения окружающей среды ртутью. Выбирая между диафрагменными и мембранными электролизерами для новых производственных мощностей, предпочтительнее использовать последние, поскольку они более экономичны, и дают возможность получить конечный продукт более высокого качества.


Список используемой литературы


1.Зарецкий С. А., Сучков В. Н., Животинский П. Б. Электрохимическая технология неорганических веществ и химические источники тока: Учебник для учащихся техникумов. М..: Высш. Школа, 1980. 423 с.

2.Мазанко А. Ф., Камарьян Г. М., Ромашин О. П. Промышленный мембранный электролиз. М.: изд-во «Химия», 1989. 240 с.

.Позин М. Е. Технология минеральных солей (удобрений, пестицидов, промышленных солей, окислов и кислот), ч.1, изд. 4-е, испр. Л., Изд-во «Химия», 1974. 792 с.

.Фиошин М. Я., Павлов В. Н. Электролиз в неорганической химии. М.: изд-во «Наука», 1976. 106 с.

.Якименко Л. М. Производство хлора, каустической соды и неорганических хлорпродуктов. М.: изд-во «Химия», 1974. 600 с.

Итнернет-источники

6.Правила безопасности при производстве, хранении, транспортировке и применении хлора // URL: #"justify">7.Аварийно химически опасные вещества // URL: #"justify">.Хлор: применение // URL: #"justify">.

Похожие статьи

© 2024 my-kross.ru. Кошки и собаки. Маленькие животные. Здоровье. Лекарство.