Излучение черного тела. Абсолютно черное тело

– физическая абстракция, применяемая в термодинамике, тело, которое полностью поглощает излучение во всех диапазонах, падающего на него. Несмотря на название, абсолютно черное тело само может испускать электромагнитное излучение. Спектр излучения абсолютно черного тела определяется только его температурой. Практической моделью черного тела может быть полость с небольшим отверстием и зачерненными стенками, поскольку свет, попадающий сквозь отверстие в полость, испытывает многократные отражения и сильно поглощается. Глубокий черный цвет некоторых материалов (древесного угля, черного бархата) и зрачка человеческого глаза объясняется тем же механизмом.
Термин введен Густавом Кирхгофом в 1862 году.

Интенсивность излучения абсолютно черного тела в зависимости от температуры и частоты определяется законом Планка:

Где I (?) d ? – мощность излучения на единицу площади излучающей поверхности на единицу телесного угла в диапазоне частот от? до? + d ?

Общая энергия теплового излучения определяется законом Стефана-Больцмана:

Где F – мощность на единицу площади излучающей поверхности, а

Вт / (м 2 · К 4) – стала Стефана-Больцмана.

Длина волны, при которой энергия излучения максимальна, определяется законом смещения Вина:

Где T – температура в кельвинах, а ? max длина волны с максимальной интенсивностью в метрах.
Видимый цвет абсолютно черных тел с разной температурой представлен на диаграмме справа.
Движение лучей света в абсолютно черном теле Искусственно можно изготовить практически абсолютно черное тело, вичорнившы внутреннюю поверхность нагретого до определенной температуры непрозрачного тела с полостью и малым отверстием. Всякий луч, проходя сквозь отверстие А в полость С, назад практически не выходит, потому испытывает многократного отражения и поглощения. Итак, отверстие А поглощает лучи так, как абсолютно черное тело.
Следует отметить, что геометрические размеры абсолютно черного тела накладывают естественные ограничения на длину электромагнитной волны, может распространяться в нем. Действительно, если длина волны больше размеры черного тела, то она в нем просто не сможет видзеркалюватись от стенок. Этот факт особенно важен в космологии, при моделировании Вселенной, в виде абсолютно черного тела на ранних этапах развития, особенно при рассмотрении реликтового излучения.
Понятием абсолютно черного тела широко пользуются в астрофизике. Излучение Солнца близко к излучению такого тела с температурой 6000К. Вся Вселенная пронизана так называемым реликтовым излучением, близким к излучению абсолютно черного тела с температурой 3К. Сравнение полного излучения звезд с излучением такого тела, позволяет приближенно оценить эффективную температуру звезды. Отклонение излучения звезды от излучения абсолютно черного тела часто бывает весьма заметным. В глубине Солнца и звезд, нагретых до десятков миллионов градусов, излучение с высокой точностью соответствует такому излучению.
Для практической реализации модели абсолютно черного тела необходимо обеспечить возможность равномерного нагрева стенок полости и выход излучения наружу через малое отверстие. Одним из первых экспериментальных образцов черного тела был прибор изготовлен Люммером и Прингсгеймом. Он представлял собой металлическую емкость с двойными стенками (подобно термостата). Пространство между стенками использовался в качестве «температурной бани» для поддержания определенной и равномерной температуры. Это достигалось путем пропускания пару кипящей воды или для низких температур – путем наполнения льдом, твердой углекислотой, жидким воздухом и т.п.
Для исследования излучения при высоких температурах использовалось черное тело другой конструкции. Цилиндр с платиновой жести, через который подается электрический ток, нужен для равномерного нагрева внутреннего фарфорового цилиндра. Температура внутри цилиндра измерялось термопарой, а диафрагмы предотвращали охлаждению проникающим воздухом.
С помощью подобных простых приборов – моделей черного тела, были экспериментально исследованы законы излучения, точно определены его константы и изучены спектральное распределение яркости.

Поляризация света – процесс упорядочения колебаний вектора напряжённости электрического поля световой волны при прохождении света сквозь некоторые вещества (при преломлении) или при отражении светового потока. Существует несколько способов получения поляризованного света.

1)Поляризация при помощи поляроидов. Поляроиды представляют собой целлулоидные пленки с нанесенным на них тончайшим слоем кристалликов сернокислогонодхинина. Применение полярой^ дов является в настоящее время наиболее распространенным способом поляризации света.

2)Поляризация посредством отражения. Если естественный луч света падает на черную полированную поверх ность, то отраженный луч оказывается частично поляризованным. В качестве поляризатора и анализатора может быть употреблено зеркальное или достаточно хорошо отполированное обычное оконное стекло, зачерненное с одной стороны асфальтовым лаком.

Степень поляризации тем больше, чем правильнее выдержан угол падения. Для стекла угол падения равен 57°.

3)Поляризация посредством п р е л о м л е н и я. Световой луч поляризуется не только при отражении, но и при преломлении. В этом случае в качестве поляризатора и анализатора используется стопка сложенных вместе 10-15 тонких стеклянных пластинок, расположенных к падающим на них световым лучам под углом в 57°.

Опт ическая акт ивность , способность среды вызывать вращение плоскости поляризации проходящего через неё оптического излучения (света).

угол j поворота плоскости поляризации линейно зависит от толщины l слоя активного вещества (или его раствора) и концентрации с этого вещества - j = [a] lc (коэффициент [a] называется удельной О. а.); 2) поворот в данной среде происходит либо по часовой стрелке (j > 0), либо против неё (j < 0), если смотреть навстречу ходу лучей света

43. Расс еяние св ета, изменение характеристик потока оптического излучения (света) при его взаимодействии с веществом. Этими характеристиками могут быть пространственное распределение интенсивности, частотный спектр, поляризация света. Часто Р. с. называется только обусловленное пространственной неоднородностью среды изменение направления распространения света, воспринимаемое как несобственное свечение среды.

РАССЕЯНИЯПОКАЗАТЕЛЬ , величина, обратная расстоянию, на котором поток излучения, образующего параллельный световой пучок, ослабляется в результате рассеяния в среде в 10 раз или в е раз.

Рэл ея зак он, гласит, что интенсивность I рассеиваемого средой света обратно пропорциональна 4-й степени длины волны l падающего света (I ~ l -4) в случае, когда среда состоит из частиц-диэлектриков, размеры которых много меньше l. I расс ~1/ 4



44. Поглощ ение св ета, уменьшение интенсивности оптического излучения (света), проходящего через материальную среду, за счёт процессов его взаимодействия со средой. Световая энергия при П. с. переходит в различные формы внутренней энергии среды или оптическое излучниедр состава; она может быть полностью или частично переизлучена средой на частотах, отличных от частоты поглощённого излучения.

Закон Бугера.Физический смысл в том, что сам процесс потери фотонов пучка в среде не зависит от их плотности в световом пучке,т.е. от интенсивности света и от полудлины I.

I=I 0 exp( λ l); l – длина волн, λ - показатель поглощения, I 0 – интенсивность поглощающего пучка.

Буг ера - Л амберта - Б ера зак он, определяет постепенное ослабление параллельного монохроматического (одноцветного) пучка света при распространении его в поглощающем веществе. Если мощность пучка, вошедшего в слой вещества толщиной l, равна I o , то, согласно Б.-Л.-Б. з., мощность пучка при выходе из слоя

I (l ) = I o e - ccl ,

где c - удельный показатель поглощения света, рассчитанный на единицу концентрации с вещества, определяющего поглощение;

Поглощения показатель (k l ), величина, обратная расстоянию, на котором монохроматический поток излучения частоты n, образующий параллельный пучок, ослабляется за счёт поглощения в веществе в е раз или в 10 раз. Измеряется в см -1 или м -1 . В спектроскопии и некоторых др. отраслях прикладной оптики термином "П. п." по традиции пользуются для обозначения коэффициента поглощения.

Молярный показатель поглощения

Коэффициент пропускания – отношение потока излучения, прошедшего через среду, к потоку,упавшему на ее поверхность. t = Ф/Ф 0

Оптическая плотность – мера непрозрачности слоя вещества для световых лучей D = lg(-F 0 /F)

Прозра́чность среды́ - отношение величины потока излучения, прошедшего без изменения направления через слой среды единичной толщины к величине падающего потока (то есть без учёта эффектов рассеивания и влияния эффектов на поверхностях раздела).

45.Теплово́еизлуче́ние - электромагнитное излучение с непрерывным спектром, испускаемое нагретыми телами за счёт их тепловой энергии.

Абсолютно чёрное тело - физическая идеализация, применяемая в термодинамике, тело, поглощающее всё падающее на него электромагнитное излучение во всех диапазонах и ничего не отражающее. Несмотря на название, абсолютно чёрное тело само может испускать электромагнитное излучение любой частоты и визуально иметь цвет. Спектр излучения абсолютно чёрного тела определяется только его температурой.

Серое тело - это такое тело, коэффициент поглощения которого не зависит от частоты, а зависит только от температуры

Для серого тела

СЕРОЕ ТЕЛО - тело, поглощения коэффициент к-рого меньше 1 и не зависит от длины волны излучения и абс. темп-рыТ . Коэф. поглощения (наз. также коэф. черноты С. т.) всех реальных тел зависит от (селективное поглощение) и Т , поэтому их можно считать серыми лишь в интервалах и Т , где коэф. прибл. постоянен. В видимой области спектра свойствами С. т. обладают каменный уголь ( = 0,80 при 400- 900 К), сажа ( = 0,94-0,96 при 370-470 К); платиновая и висмутовая черни поглощают и излучают как С. т. в наиб.широком интервале - от видимого света до 25-30 мкм ( = 0,93-0,99).

Основные законы излучения:

Закон Стефана - Больцмана - закон излучения абсолютно чёрного тела. Определяет зависимость мощности излучения абсолютно чёрного тела от его температуры. Формулировка закона:

где - степень черноты (для всех веществ , для абсолютно черного тела ). При помощи закона Планка для излучения, постоянную σ можно определить как

где - постоянная Планка, k - постоянная Больцмана, c - скорость света.

Численное значение Дж·с −1 ·м −2 · К −4 .

Закон излучения Кирхгофа - физический закон, установленный немецкимфизикомКирхгофом в 1859 году.

В современной формулировке закон звучит следующим образом:

Отношение излучательной способности любого тела к его поглощательной способности одинаково для всех тел при данной температуре для данной частоты и не зависит от их формы и химической природы.

Известно, что при падении электромагнитного излучения на некоторое тело часть его отражается, часть поглощается и часть может пропускаться. Доля поглощаемого излучения на данной частоте называется поглощательной способностью тела . С другой стороны, каждое нагретое тело излучает энергию по некоторому закону , именуемым излучательной способностью тела .

Величины и могут сильно меняться при переходе от одного тела к другому, однако согласно закону излучения Кирхгофа отношение испускательной и поглощательной способностей не зависит от природы тела и является универсальной функцией частоты (длины волны) и температуры:

Длина волны, при которой энергия излучения абсолютно чёрного тела максимальна, определяется законом смещения Вина :

где T - температура в кельвинах, а λ max - длина волны с максимальной интенсивностью в метрах.

Характеристики теплового излучения

Тела, нагретые до доста 424e43ie ;точно высоких температур, светятся. Свечение тел, обусловлен╜ное нагреванием, называется тепловым (температурным) излучением . Тепловое излуче╜ние, являясь самым распространенным в природе, совершается за счет энергии тепло╜вого движения атомов и молекул вещества (т. е. за счет его внутренней энергии) и свойственно всем телам при температуре выше 0 К. Тепловое излучение характеризу╜ется сплошным спектром, положение максимума которого зависит от температуры. При высоких температурах излучаются короткие (видимые и ультрафиолетовые) элект╜ромагнитные волны, при низких ≈ преимущественно длинные (инфракрасные).

Тепловое излучение ≈ практически единственный вид излучения, который может быть равновесным . Предположим, что нагретое (излучающее) тело помещено в по╜лость, ограниченную идеально отражающей оболочкой. С течением времени, в резуль╜тате непрерывного обмена энергией между телом и излучением, наступит равновесие, т. е. тело в единицу времени будет поглощать столько же энергии, сколько и излучать. Допустим, что равновесие между телом и излучением по какой-либо причине нарушено и тело излучает энергии больше, чем поглощает. Если в единицу времени тело больше излучает, чем поглощает (или наоборот), то температура тела начнет понижаться (или повышаться). В результате будет ослабляться (или возраста 424e43ie ;ть) количество излучаемой телом энергии, пока, наконец, не уста 424e43ie ;новится равновесие. Все другие виды излучения неравновесны.

Количественной характеристикой теплового излучения служит спектральная плот╜ность энергетической светимости (излучательности) тела ≈ мощность излучения с еди╜ницы площади поверхности тела в интервале частот единичной ширины:

где d ≈ энергия электромагнитного излучения, испускаемого за единицу време╜ни (мощность излучения) с единицы площади поверхности тела в интервале частот от n до n +dn .

Единица спектральной плотности энергетической светимости (R n,T ) ≈джоуль на метр в квадрате (Дж/м 2).

Записанную формулу можно предста 424e43ie ;вить в виде функции длины волны:

Так как c=ln, то

где знак минус указывает на то, что с возраста 424e43ie ;нием одной из величин (n или l) другая величина убывает. Поэтому в дальнейшем знак минус будем опускать. Таким образом,

С помощью формулы (197.1) можно перейти от R n,T ═ к R l,T и наоборот.

Зная спектральную плотность энергетической светимости, можно вычислить интег╜ральную энергетическую светимость (интегральную излучательность) (ее называют про╜сто энергетической светимостью тела), просуммировав по всем частотам:

Способность тел поглощать падающее на них излучение характеризуется спект╜ральной поглощательной способностью

показывающей, какая доля энергии, приносимой за единицу времени на единицу площади поверхности тела падающими на нее электромагнитными волнами счастота╜ми от n до n +dn , поглощается телом. Спектральная поглощательная способ╜ность ≈ величина безразмерная. Величины R n,T ═иА n,T зависят от природы тела, его термодинамической температуры и при этом различаются для излучений с различными частотами. Поэтому эти величины относят к определенным Т и n (вернее, к доста 424e43ie ;точно узкому интервалу частот от n до n +dn ).

Тело, способное поглощать полностью при любой температуре все падающее на него излучение любой частоты, называется черным. Следовательно, спектральная поглощательная способность черного тела для всех частот и температур тождественно равна единице ( ). Абсолютно черных тел в природе нет, однако такие тела, как сажа, платиновая чернь, черный бархат и некоторые другие, в определенном интервале частот по своим свойствам близки к ним.

Идеальной моделью черного тела является замкнутая полость с небольшим отвер╜стиемО, внутренняя поверхность которой зачернена (рис. 286). Луч света, попавший внутрь такой полости, испытывает многократные отражения от стенок, в результате чего интенсивность вышедшего излучения оказывается практически равной нулю. Опыт показывает, что при размере отверстия, меньшего 0,1 диаметра полости, пада╜ющее излучение всех частот полностью поглощается. Вследствие этого открытые окна домов со стороны улицы кажутся черными, хотя внутри комнат доста 424e43ie ;точно светло из-за отражения света от стен.

Наряду с понятием черного тела используют понятие серого тела ≈ тела, поглощательная способность которого меньше единицы, но одинакова для всех частот и зави╜сит только от температуры, материала и состояния поверхности тела. Таким образом, для серого тела =A T = const

Исследование теплового излучения сыграло важную роль в создании квантовой теории света, поэтому необходимо рассмотреть законы, которым оно подчиняется.

Энергетическая светимость тела R Т , численно равна энергии W , излучаемой телом во всем диапазоне длин волн (0<<) с единицы поверхности тела, в единицу времени, при температуре телаТ , т.е.

(1)

Испускательная способность тела r ,Т численно равна энергии тела dW , излучаемой телом c единицы поверхности тела, за единицу времени при температуре тела Т, в диапазоне длин волн от  до +d, т.е.

(2)

Эту величину называют также спектральной плотностью энергетической светимости тела.

Энергетическая светимость связана с испускательной способностью формулой

(3)

Поглощательная способность тела ,T - число, показывающее, какая доля энергии излучения, падающего на поверхность тела, поглощается им в диапазоне длин волн от до +d, т.е.

. (4)

Тело, для которого  ,T =1 во всем диапазоне длин волн, называется абсолютно черным телом (АЧТ).

Тело, для которого  ,T =const<1 во всем диапазоне длин волн называют серым.

46. Особыми физическими приборами, называемыми актинометрами, можно измерить количество солнечной энергии, получаемой на земной поверхности на единицу площади в единицу времени. Прежде чем лучи Солнц а достигнут поверхности Земли и попадут в актинометр, они должны пройти всю толщу нашей атмосферы, вследствие чего часть энергии будет поглощена атмосферой. Величина этого поглощения весьма колеблется в зависимости от состояния атмосферы, так что получаемое на земной поверхности количество солнечной энергии в разное время весьма различно.

Солнечной постоянной называется количество энергии, получаемое одним квадратным сантиметром площади, выставленной на границе земной атмосферы перпендикулярно к лучам Солнца, в одну минуту в малых калориях. Из большого ряда актинометрических наблюдений многих геофизических обсерваторий для солнечной постоянной было получено следующее значение:

А = 1,94 кал/см2 мин.

На 1 квадратный метр обращенной к Солнцу поверхности площадки в окрестностях Земли ежесекундно поступает 1400 Дж энергии, переносимой солнечным электромагнитным излучением. Эта величина называется солнечной постоянной. Иными словами, плотность потока энергии солнечного излучения составляет 1,4 кВт/м 2 .

СОЛНЕЧНЫЙ СПЕКТР - распределение энергии электромагнитного излучения Солнца в диапазоне длин волн от нескольких долей нм (гамма-излучение) до метровых радиоволн. В видимой области солнечный спектр близок к спектру абсолютно черного тела при температуре около 5800 К; имеет энергетический максимум в области 430-500 нм. Солнечный спектр - непрерывный спектр, на который наложено более 20 тыс. линий поглощения (Фраунгоферовых линий) различных химических элементов.

Актин ометр - прибор для измерения интенсивности прямой солнечной радиации. Принцип действия А. основан на поглощении падающей радиации зачернённой поверхностью и превращении её энергии в теплоту. А. является относительным прибором, т.к. об интенсивности радиации судят по различным явлениям, сопровождающим нагревание, в отличие от пиргелиометров - приборов абсолютных. Например, принцип действия актинометра Михельсона основан на нагревании солнечными лучами зачернённой сажей биметаллической пластинки 1 , спрессованной из железа и инвара.При нагревании железо удлиняется, а инвар почти не испытывает теплового расширения, поэтому пластинка изгибается. Величина изгиба служит мерой интенсивности солнечной радиации. С помощью микроскопа наблюдают перемещение кварцевой нити, расположенной на конце пластинки.

Абсолютно черное тело

Излучение нагретого чёрного тела в видимом диапазоне

Абсолютно чёрное тело - физическая абстракция, применяемая в термодинамике , тело, поглощающее всё падающее на него электромагнитное излучение во всех диапазонах и ничего не отражающее. Несмотря на название, абсолютно чёрное тело само может испускать электромагнитное излучение любой частоты и визуально иметь . Спектр излучения абсолютно чёрного тела определяется только его температурой .

Наиболее чёрные реальные вещества, например, сажа , поглощают до 99 % падающего излучения (т. е. имеют альбедо , равное 0,01) в видимом диапазоне длин волн, однако инфракрасное излучение поглощается ими значительно хуже. Среди тел Солнечной системы свойствами абсолютно чёрного тела в наибольшей степени обладает Солнце . Термин был введён Густавом Кирхгофом в .

Практическая модель

Модель абсолютно черного тела

Абсолютно чёрных тел в природе не существует, поэтому в физике для экспериментов используется модель. Она представляет из себя замкнутую полость с небольшим отверстием. Свет, попадающий внутрь сквозь это отверстие, после многократных отражений будет полностью поглощён, и отверстие снаружи будет выглядеть совершенно чёрным. Но при нагревании этой полости у неё появится собственное видимое излучение.

Законы излучения абсолютно чёрного тела

Классический подход

Изучение законов излучения абсолютно чёрного тела явилось одной из предпосылок появления квантовой механики .

Первый закон излучения Вина

Тем не менее закон излучения Рэлея - Джинса справедлив для длинноволновой области спектра и адекватно описывает характер излучения. Объяснить факт такого соответствия можно лишь при использовании квантово-механического подхода, согласно которому излучение происходит дискретно. Исходя из квантовых законов можно получить формулу Планка , которая будет совпадать с формулой Рэлея - Джинса при .

Этот факт является прекрасной иллюстрацией действия принципа соответствия , согласно которому новая физическая теория должна объяснять всё то, что была в состоянии объяснить старая.

Закон Планка

Зависимость мощности излучения чёрного тела от длины волны

Интенсивность излучения абсолютно чёрного тела в зависимости от температуры и частоты определяется законом Планка :

где I (ν)d ν - мощность излучения на единицу площади излучающей поверхности в диапазоне частот от ν до ν + d ν .

Эквивалентно,

,

где u (λ)d λ - мощность излучения на единицу площади излучающей поверхности в диапазоне длин волн от λ до λ + d λ .

Закон Стефана - Больцмана

Общая энергия теплового излучения определяется законом Стефана - Больцмана :

,

где j - мощность на единицу площади излучающей поверхности, а

Вт/(м²·К 4) - постоянная Стефана - Больцмана .

Таким образом, абсолютно чёрное тело при T = 100 K излучает 5,67 ватт с квадратного метра своей поверхности. При температуре 1000 К мощность излучения увеличивается до 56,7 киловатт с квадратного метра.

Закон смещения Вина

Длина волны, при которой энергия излучения абсолютно чёрного тела максимальна, определяется законом смещения Вина :

Так, если считать в первом приближении, что кожа человека близка по свойствам к абсолютно чёрному телу, то максимум спектра излучения при температуре 36°C (309 К) лежит на длине волны 9400 нм (в инфракрасной области спектра).

Видимый цвет абсолютно чёрных тел с разной температурой представлен на диаграмме.

Чернотельное излучение

Электромагнитное излучение, находящееся в термодинамическом равновесии с абсолютно чёрным телом при данной температуре (например, излучение внутри полости в абсолютно чёрном теле), называется чернотельным (или тепловым равновесным) излучением. Равновесное тепловое излучение однородно, изотропно и неполяризовано, перенос энергии в нём отсутствует, все его характеристики зависят только от температуры абсолютно чёрного тела-излучателя (и, поскольку чернотельное излучение находится в тепловом равновесии с данным телом, эта температура может быть приписана излучению). Объёмная плотность энергии чернотельного излучения равна , его

Закон Кирхгофа приводит к интересному следствию. Тела, обменивающиеся теплом посредством излучения, получают (при данных и одну и ту же интенсивность электромагнитных волн от своих соседей, независимо от материала и свойств тела. Для каждой длины волны (или частоты, это одно и то же) и для каждой температуры опыт приводит к универсальной величине Таким образом, существует универсальная функция функция частоты излучения и температуры, характеризующая процесс теплообмена излучением.

Функции можно придать наглядное содержание. Рассмотрим тело, поглощающее 100% падающей на него энергии при всех длинах волн. Для такого абсолютно черного тела и

Функция есть испускательная способность абсолютно черного тела. Но как осуществить тело, поглощающее свет любых длин волн? Разумеется, черные вещества типа сажи позволят нам приблизиться к такому телу. Однако несколько процентов будут нас всегда отделять от условия Возможно более остроумное решение.

Представьте себе ящик с небольшим отверстием. Уменьшая размеры этого отверстия, можно сделать его абсолютно черным. Эта особенность отверстий хорошо известна из повседневных наблюдений. Глубокая нора, раскрытое окно не освещенной изнутри комнаты, колодец - вот примеры абсолютно черных «тел». Вполне понятно, в чем здесь дело: луч, попавший в полость через отверстие, способен выйти наружу лишь после многократных отражений (рис. 187). Но при каждом отражении теряется доля энергии.

Поэтому при малом отверстии в большой полости луч не сумеет выйти, т. е. полностью поглотится.

Для измерения испускательной способности абсолютно черного тела изготавливается длинная трубка из тугоплавкого материала, которая помещается в печь и нагревается. Через отверстие трубки с помощью спектрографа изучается характер излучения. Результаты подобных экспериментов изображены на рис. 188. Кривые представляют собой интенсивность излучения в функции длины волны, построенные для нескольких температур. Мы видим, что излучение сосредоточено в относительно узком спектральном интервале, лежащем в пределах Лишь при более высоких температурах кривая захватывает область видимого спектра и начинает продвигаться в сторону коротких волн. Волны длиной несколько микрон носят название инфракрасных. Поскольку они при обычных температурах берут на себя основную обязанность переноса энергии, мы называем их тепловыми.

Кривая теплового излучения обладает максимумом, тем более ярко выраженным, чем выше температура. При возрастании температуры длина волны соответствующая максимуму спектра, сдвигается в сторону более коротких волн. Этот сдвиг подчиняется так называемому закону Вина, который легко устанавливается на опыте:

в этой формуле длина волны должна быть выражена в микронах, в градусах абсолютной шкалы. Сдвиг излучения в сторону коротких волн мы наблюдаем, когда следим за накаливанием металла - смена красного каления на желтое по мере роста температуры.

Второе обстоятельство, на которое мы обращаем внимание, рассматривая кривые излучения, - это быстрый рост всех ординат кривой с увеличением Если есть интенсивность для данной волны, то суммарная интенсивность спектра представится интегралом

Этот интеграл есть не что иное как площадь под кривой излучения. С какой же быстротой растет при увеличении 7? Анализ кривых показывает, что весьма быстро - пропорционально четвертой степени температуры:

где Это закон Стефана - Больцмана.

Оба закона имеют значение при определении температуры далеких от нас раскаленных тел. Именно таким способом определяется температура Солнца, звезд, раскаленного облака атомного взрыва.

Законы теплового излучения лежат в основе определения температуры расплавленного металла. Принцип оптических пирометров заключается в подборе такого накала нити электрической лампы, при котором свечение этой нити становится таким же, что и свечение расплавленного металла. Мы пользуемся законом: если тождественно излучение, то одинаковы и температуры. Что же касается температуры раскаленной нити, то она находится в прямой зависимости от электрического тока, проходящего через нить. Исходя из этого, оптический пирометр нетрудно проградуировать.

Реальные тела не являются абсолютно черными, и для каждого из них в формулу Стефана - Больцмана приходится вводить множитель, меньший единицы (поглощательную способность данного тела). Эти множители определяются эмпирически и представляют интерес для практической теплотехники, для которой проблемы теплообмена излучением крайне существенны. Тем не менее рассмотренные законы имеют значение, так как закономерности излучения (ход с температурой, ход с длиной волны) в общих чертах сохраняются и для нечерных тел. Теоретическая же значимость вопроса об абсолютно черном теле выяснится в следующем параграфе.



Похожие статьи

© 2024 my-kross.ru. Кошки и собаки. Маленькие животные. Здоровье. Лекарство.