Что такое гистерезис, какие польза и вред от данного явления. Определение понятия гистерезиса: особенности, применения в котлах

Гистере́зис (от греч. hysteresis - отставание) - физическое явление, при котором наблюдается запаздывание изменения состояния системы от изменения физической величины, определяющей внешние условия.
Например, запаздывание изменения намагниченности ферромагнетика от изменения напряженности магнитного поля; запаздывание изменения поляризации сегнетоэлектрика от изменения электрического поля.
Наблюдается в тех случаях, когда состояние системы определяется внешними условиями не только в данный момент времени, но и в предшествующие моменты. Гистерезис наблюдается в разных разделах физики. Наиболее важны: магнитный гистерезис, сегнетоэлектрический гистерезис и упругий гистерезис.

Суть данного явления можно пояснить на примере работы термостата.
Рассмотрим термостат, настроенный на поддержание температуры 20 °С с помощью электрического нагревателя. Если бы управляющая нагревателем биметаллическая пластина, деформирующаяся при изменении температуры, не обладала гистерезисом, нагреватель включался бы и выключался очень часто, что приведет к быстрому износу контактов. В действительности регулятор включается при 19 °С, а выключается примерно при 21 °С. При этом механическая инерционность биметаллической пластины и тепловая инерционность нагревателя порождают явление гистерезиса, переключение режимов происходит с небольшой частотой, а температура в термостате колеблется в некотором интервале вблизи заданного значения (рис. 1 ).

Рисунок 1

Для гистерезиса характерно явление «насыщения», а также неодинаковость траекторий между крайними состояниями, отсюда наличие остроугольной петли на графиках, именуемой петлей гистерезиса. Неоднозначная зависимость состояния системы от физической величины (при циклическом изменении) изображается петлей гистерезиса (рис. 2 )

Рисунок 2

В электронике и электротехнике используются устройства, обладающие магнитным гистерезисом - различные магнитные носители информации, или электрическим гистерезисом, например, триггер Шмитта или гистерезисный двигатель. Гистерезис используется для подавления шумов (быстрых колебаний, дребезга контактов) в момент переключения логических сигналов. Например, для подавления дребезга контактов часто применяется триггер Шмитта (рис. 3 ).

Рисунок 3. Петля гистерезиса для триггера Шмитта имеет прямоугольный вид
В электронных приборах всех видов наблюдается явление теплового гистерезиса: после нагрева прибора и его последующего охлаждения до начальной температуры его параметры не возвращаются к начальным значениям. Из-за неодинакового теплового расширения кристаллов полупроводников, кристаллодержателей, корпусов микросхем и печатных плат в кристаллах возникают механические напряжения, которые сохраняются и после охлаждения. Явление теплового гистерезиса наиболее заметно в прецизионных источниках опорного напряжения, используемых в измерительных аналого-цифровых преобразователях. В современных микросхемах относительный сдвиг опорного напряжения вследствие теплового гистерезиса составляет порядка 10-100

Любой электромагнитный сердечник после действия электрического тока какое-то время сохраняет магнитное поле (остаточный магнетизм). Эта величина зависит от свойств материала, но остаточный магнетизм всегда имеется. Чтобы перемагнитить сердечник, необходим магнитный поток обратного направления. Изменение магнитной индукции не успевает за изменением магнитного потока. Эта задержка по времени намагничивания сердечника из-за изменения направления магнитных потоков и именуется как гистерезис.

Чтобы понять всю сущность этого явления, необходимо рассмотреть способность веществ к намагничиванию.

Магнитные свойства веществ

Все вещества в окружающей нас природе в той или иной мере обладают магнитными свойствами. Еще в глубокой древности была известна удивительная способность некоторых минералов притягивать железные предметы. Среди многочисленных навигационных приборов, необходимых для прокладывания курса корабля или самолета, обязательно присутствует магнитный компас.

В точнейших измерительных приборах к числу основных деталей относятся постоянные магниты. Известно, что сильными магнитными свойствами обладает не только железо. Сюда входят кобальт, никель, сплавы на их основе и некоторые редкоземельные элементы. Все эти вещества и сплавы называют ферромагнетиками. Объединяет их способность к самопроизвольной спонтанной намагниченности.

Это свойство ферромагнетиков используют при создании постоянных магнитов. Наличие в атомах вещества нескомпенсированных магнитных моментов является необходимым условием возникновения ферромагнетизма.

В опыте Эйнштейна по величине закручивания при намагничивании образца было доказано, что ферромагнетизм связан со спиновыми магнитными моментами электронов. Обменное взаимодействие электронов при определенных соотношениях диаметра атома и внутренней незаполненной оболочки приводят к параллельной ориентации спинов.

Она возможна только при положительном значении интеграла обменной энергии.

В конечном счете, в ферромагнетике устанавливается такая ориентация спинов, которая обеспечивает минимальное значение суммы энергий магнитного и обменного взаимодействия.

Область с однородной спонтанной намагниченностью называют доменом. Энергетически наиболее выгодно такое расположение доменов, при котором они создают замкнутую магнитную цепь.

Между соседними доменами с различным направлением намагниченности имеются переходные слои, называемые границами или стенками домена. В них происходит постепенный поворот вектора намагниченности.

Ферромагнитные свойства у веществ существуют только в определенной области температуры. Температура, при которой ферромагнетики полностью теряют ферромагнитные свойства, называют точкой Кюри. Форму и величину доменов на поверхности ферромагнетика можно увидеть под микроскопом

В элементарной кристаллической ячейке железа ребра куба соответствуют направлению наиболее легкого намагничивания кристалла железа. Диагонали граней определяют направление среднего намагничивания.

Направление наиболее трудного намагничивания совпадает с диагоналями куба. Площадь на графике характеризует энергию магнитной анизотропии.

При отсутствии внешнего поля магнитные моменты доменов ориентированы по направлениям легкого намагничивания. В целом образец размагничен.

В слабых полях происходит рост доменов, направление намагниченности которых составляет меньший угол с направлением внешнего поля.

Этот процесс обратим. Если внешнее поле убрать, образец размагнитится. При увеличении внешнего поля происходит дальнейший рост доменов, который приостанавливается из-за дефектов кристалла. Когда поле достигает определенной величины, стенки растущих доменов скачком преодолевают препятствие. За счет этого препятствия кривая намагниченности имеет ступенчатый характер.

Скачкообразные изменения намагниченности создают в катушке соленоида импульсы напряжения. С дальнейшим увеличением поля вектор намагниченности поворачивается от оси легкого намагничивания в сторону внешнего поля, пока они не совпадут.

Гистерезис

Этот участок называют областью технического насыщения ферромагнетика, а соответствующую величину поля, полем насыщения. Если от этой величины поле уменьшить до нуля, в образце сохранится остаточное намагничивание.

Гистерезис – это явление отставания намагниченности от напряженности внешнего поля. Замыкающие домены, создавая замкнутую магнитную цепь, снижают поля рассеивания и уменьшают свободную энергию образца.

Его определяют, как разность величин магнитного насыщения ферромагнетика и намагниченности замыкающих доменов. Чтобы размагнитить образец, необходимо приложить к нему отрицательное поле, называемое коэрцитивной силой. Когда поле достигнет величины насыщения, произойдет полное перемагничивание ферромагнетика.

На графике можно определить еще одно свойство, которое имеет гистерезис. При очередном изменении поля кривая намагничивания замыкает петлю, которую называют петлей гистерезиса.

Гистерезисная петля для условия насыщения называется предельной петлей. Ее площадь пропорциональна потерям энергии на перемагничивание образца. Ферромагнетики намагничиваясь, изменяют свои линейные размеры. Это явление называют магнитострикцией.

Выделяются две основные группы ферромагнитных материалов:

  1. Магнитотвердые.
  2. Магнитомягкие.

Одно из основных требований к магнитомягким материалам – их высокая коэрцитивная сила. Магнитомягкие материалы намагничиваются до насыщения при небольших полях и имеют малые потери на перемагничивание. От этих параметров зависит потеря энергии трансформатора.

Например, в линии электропередач мощностью 100 х 10 6 ВА с трансформаторами на концах, ежегодные потери составляют около 5 миллионов киловатт-часов. Одним из лучших представителей магнитомягких материалов считают пермаллой – сплав железа и никеля. Намагниченность пермаллоя в слабых полях в десятки раз превосходит намагниченность железа. Магнитные упорядоченные структуры в некоторых веществах отличаются от магнитной структуры ферромагнетиков.

Если в железе, кобальте и никеле спиновые магнитные моменты направлены параллельно, то в хроме и марганце – антипараллельно. Такие вещества называют антиферромагнетиками.

В данном случае магнитные подрешетки с самопроизвольной намагниченностью компенсированы. Если в кристаллах вещества нет полной компенсации магнитных подрешеток, то его называют ферримагнетиком. Феррит – один из примеров ферримагнетиков, который широко используют в технике. Структура ферритов подобна структуре минералов шпинели, в котором ионы неферромагнитных металлов заменены ферромагнитными.

Гистерезис в электротехнике и электронике

Из многообразия примеров использования ферромагнитных материалов расскажем о применении их в запоминающих устройствах. Для оперативного запоминания информации используют память на ферритовых кольцах. Одного ферритового сердечника достаточно для запоминания одного бита информации. В качестве долговременных запоминающих устройств большой емкости служат специальные магнитные диски (триггеры Шмидта).

Также он используется в специальных гистерезисных электромоторах, устройствах шумоподавления (дребезг контактов, колебания и т.д.) при коммутации логических схем.

Во многих электронных устройствах существует тепловой гистерезис. Во время работы приборы нагреваются, а после охлаждения некоторые свойства уже не принимают начальные значения. При нагреве микросхемы, печатной платы, кристаллы полупроводников расширяются, появляется механическое напряжение. При охлаждении это напряжение в какой-то мере остается.

Гистерезис

Явление магнитного гистерезиса наблюдается не только при изменении поля H по величине и знаку, но также и при его вращении (гистерезис магнитного вращения), что соответствует отставанию (задержке) в изменении направления M с изменением направления H . Гистерезис магнитного вращения возникает также при вращении образца относительно фиксированного направления H .

Теория явления гистерезиса учитывает конкретную магнитную доменную структуру образца и её изменения в ходе намагничивания и перемагничивания. Эти изменения обусловлены смещением доменных границ и ростом одних доменов за счёт других, а также вращением вектора намагниченности в доменах под действием внешнего магнитного поля. Всё, что задерживает эти процессы и способствует попаданию магнетиков в метастабильные состояния, может служить причиной магнитного гистерезиса.

В однодоменных ферромагнитных частицах (в частицах малых размеров, в которых образование доменов энергетически невыгодно) могут идти только процессы вращения M . Этим процессам препятствует магнитная анизотропия различного происхождения (анизотропия самого кристалла, анизотропия формы частиц и анизотропия упругих напряжений). Благодаря анизотропии, M как-будто удерживается некоторым внутренним полем (эффективным полем магнитной анизотропии) вдоль одной из осей лёгкого намагничивания, соответствующей минимуму энергии. Магнитный гистерезис возникает из-за того, что два направления M (по и против) этой оси в магнитоодноосном образце или несколько эквивалентных (по энергии) направлений М в магнитомногоосном образце соответствуют состояниям, отделённым друг от друга потенциальным барьером (пропорциональным ). При перемагничивании однодоменных частиц вектор M рядом последовательных необратимых скачков поворачивается в направлении H . Такие повороты могут происходить как однородно, так и неоднородно по объёму. При однородном вращении M коэрцитивная сила . Более универсальным является механизм неоднородного вращения M . Однако наибольшее влияние на он оказывает в случае, когда основную роль играет анизотропия формы частиц. При этом может быть существенно меньше эффективного поля анизотропии формы.

Сегнетоэлектрический гистерезис - неоднозначная петлеобразная зависимость поляризации P сегнетоэлектриков от внешнего электрического поля E при его циклическом изменении. Сегнетоэлектрические кристаллы обладают в определенном температурном интервале спонтанной (самопроизвольной, то есть возникающей в отсутствие внешнего электрического поля) электрической поляризацией P c . Направление поляризации может быть изменено электрическим полем. При этом зависимость P (E ) в полярной фазе неоднозначна, значение P при данном E зависит от предыстории, то есть от того, каким было электрическое поле в предшествующие моменты времени. Основные параметры сегнетоэлектрического гистерезиса:

  • остаточная поляризация кристалла P ост, при E = 0
  • значение поля E Kt (коэрцитивное поле) при котором происходит переполяризация

Упругий гистерезис

Гистерезис используется для подавления шумов (быстрых колебаний, дребезга контактов) в момент переключения логических сигналов.

В электронных приборах всех видов наблюдается явление теплового гистерезиса : после нагрева прибора и его последующего охлаждения до начальной температуры его параметры не возвращаются к начальным значениям. Из-за неодинакового теплового расширения кристаллов полупроводников, кристаллодержателей, корпусов микросхем и печатных плат в кристаллах возникают механические напряжения , которые сохраняются и после охлаждения. Явление теплового гистерезиса наиболее заметно в прецизионных , используемых в измерительных аналого-цифровых преобразователях . В современных микросхемах относительный сдвиг опорного напряжения вследствие теплового гистерезиса составляют порядка 10-100 ppm .

В биологии

Гистерезисные свойства характерны для скелетных мышц млекопитающих.

В почвоведении

Одно из них указывает на взаимосвязь приложенных усилий субъектом влияния и достигнутым результатом. Уровень затраченной субъектом просветительской и пропагандистской работы можно соотносить с уровнем «намагниченности» (степенью вовлеченности в новую идею) объекта-носителя общественного мнения, социальную группу, коллектив, социальную общность или общество в целом; при этом может обнаружиться некоторое отставание объекта от субъекта. Переубеждение, в том числе с предполагаемыми деструктивными последствиями, далеко не всегда проходит успешно. Оно зависит от собственных моральных ценностей, обычаев, традиций, характера предыдущего воспитания, от этических норм, доминирующих в обществе и т. д.

Второе обстоятельство связано с тем, что новый этап формирования общественного мнения можно соотносить с историей объекта, его опытом, его оценкой теми, кто ранее выступал объектом формирования общественного мнения. При этом можно обнаружить, что "точка отсчета" времени формирования общественного мнения смещается относительно прежней, что является характеристикой самой системы и ее текущего состояния.

Литература по теме

  • Раддай Райхлин Гражданская война, террор и бандитизм. Систематизация социологии и социальная динамика . Раздел «Борьба с толпой»
  • Капустин Валерий Сергеевич Введение в теорию социальной самоорганизации . Тема 11. Явление гистерезиса в формировании национальных форм и способов самоорганизации. Современные парадоксы и загадки «начала»

В философии

Математические модели гистерезиса

Появление математических моделей гистерезисных явлений обуславливалось достаточно богатым набором прикладных задач (прежде всего в теории автоматического регулирования), в которых носители гистерезиса нельзя рассматривать изолированно, поскольку они являлись частью некоторой системы. Создание математической теории гистерезиса относится к 60-м годам XX-го века, когда в Воронежском университете начал работать семинар под руководством М. А. Красносельского , «гистерезисной» тематики. Позднее, в 1983 году появилась монография , в которой различные гистерезисные явления получили формальное описание в рамках теории систем: гистерезисные преобразователи трактовались как операторы, зависящие от своего начального состояния как от параметра, определённые на достаточно богатом функциональном пространстве (например, в пространстве непрерывных функций), действующие в некотором функциональном пространстве. Простое параметрическое описание различных петель гистерезиса можно найти в работе (замена в данной модели гармонических функций на прямоугольные, треугольные или трапецеидальные импульсы позволяет также получить кусочно-линейные петли гистерезисы, которые часто встречаются в дискретной автоматике, см. пример на Рис. 2).

Литература

Примечания


Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Гистерезис" в других словарях:

    - (от греч. hysteresis отставание) запаздывание изменения физической величины, характеризующей состояние вещества (намагниченности М ферромагнетика, поляризации P сегнетоэлектрика и т. п.), от изменения другой физической величины, определяющей… … Большой Энциклопедический словарь

    Сдвиг, отставание Словарь русских синонимов. гистерезис сущ., кол во синонимов: 2 отставание (10) … Словарь синонимов

    ГИСТЕРЕЗИС, явление, характерное для упругих тел; заключается в том, что ДЕФОРМАЦИЯ тела при увеличении НАПРЯЖЕНИЯ меньше, чем при его уменьшении из за задержки эффекта деформации. Когда механическое напряжение удалено полностью, остается… … Научно-технический энциклопедический словарь

    - (от греческого hysteresis отставание, запаздывание) 1) Г. в аэродинамике неоднозначность структуры поля течения и, следовательно, аэродинамических характеристик обтекаемого тела при одних и тех же значениях кинематических параметров, но при… … Энциклопедия техники

Рассмотрим процесс переменного намагничивания ферромагнитного материала. Для этой цели намотаем на стальной сердечник обмотку и будем по ней пропускать постоянный ток. Предположим, что сердечник электромагнита ранее не был намагничен.

Увеличивая проходящий по виткам обмотки ток I от нуля, мы тем самым будем увеличивать намагничивающую силу и напряженность поля H . Величина магнитной индукции B в сердечнике будет также увеличиваться. Кривая намагничивания на рисунке 1 имеет прямолинейную часть, а затем вследствие насыщения кривая поднимается медленно, приближаясь к горизонтали. Если теперь, достигнув точки а , уменьшать H , то будет уменьшаться и B . Однако уменьшение B при уменьшении H , то есть при размагничивании, будет происходить с запаздыванием по отношению к уменьшению H . Величина остаточной индукции при H = 0 характеризуется отрезком .

Для того чтобы магнитная индукция в сердечнике стала равной нулю, необходимо намагничивать материал в обратном направлении, то есть перемагнитить его. Для этой цели направление тока в обмотке меняется на обратное. Направление магнитных линий и напряженности магнитного поля также изменяется. При напряженности поля H = индукция в сердечнике равна нулю и материал сердечника полностью размагничен. Значение напряженности поля H = при B = 0 является определенной характеристикой материала и называется задерживающей (коэрцитивной) силой.

Повторяя процесс перемагничивания, мы получаем замкнутую кривую а б в г д е а , которая называется петля гистерезиса или петля магнитного гистерезиса. Гистерезис от греческого – отстающий, запаздывающий. На этом опыте легко убедиться, что намагничивание и размагничивание сердечника (появление и исчезновение полюсов, магнитной индукции или магнитного потока) отстают от момента появления и исчезновения намагничивающей и размагничивающей силы (тока в обмотке электромагнита). Явление гистерезиса можно иными словами охарактеризовать как отставание изменений магнитной индукции от изменений напряженности поля. Перемагничивание материала связано с затратой некоторого количества энергии, которая выделяется в виде тепла, нагревающего материал.

Магнитный гистерезис особенно сильно сказывается, если материал сердечника обладает большим остаточным магнетизмом (например, твердая сталь). Явление гистерезиса в большинстве случаев вредно. Оно вызывает потери на гистерезис выраженные в нагреве сердечника и лишних затратах мощности источника напряжения, а также сопровождается гудением сердечника вследствие перемены полярности и поворотов элементарных частиц материала сердечника.

Первое серьезное исследование процессов намагничивания стали было проведено Александром Григорьевичем Столетовым (1839 – 1896) в 1872 году и опубликовано в работе "О функции намагничивания мягкого железа".

А. Г. Столетов, кроме того, исследовал и объяснил природу внешнего фотоэффекта и изготовил первый фотоэлемент.

Видео 1. Гистерезис

Гистерезис (от греч. hysteresis - отставание, запаздывание), явление, которое состоит в том, что физическая величина, характеризующая состояние тела (например, намагниченность), неоднозначно зависит от физические величины, характеризующей внешние условия (например, магнитного поля). Г. наблюдается в тех случаях, когда состояние тела в данный момент времени определяется внешними условиями не только в тот же, но и в предшествующие моменты времени. Неоднозначная зависимость величин наблюдается в любых процессах, т.к. для изменения состояния тела всегда требуется определённое время (время релаксации) и реакция тела отстаёт от вызывающих её причин. Такое отставание тем меньше, чем медленнее изменяются внешние условия Однако для некоторых процессов отставание при замедлении изменения внешних условий не уменьшается. В этих случаях неоднозначную зависимость величин называется гистерезисной, а само явление - Г.

Г. наблюдается в различных веществах и при разных физических процессах. Наибольший интерес представляют: магнитный Г., диэлектрический Г. и упругий Г.

Магнитный Г. наблюдается в магнитных материалах, например в ферромагнетиках. Основной особенностью ферромагнетиков является наличие спонтанной (самопроизвольной) намагниченности. Обычно ферромагнетик намагничен не однородно, а разбит на домены - области однородной спонтанной намагниченности, у которых величина намагниченности (магнитного момента единицы объема) одинакова, а направления различны. Под действием внешнего магнитного поля число и размеры доменов, намагниченных по полю, увеличиваются за счёт др. доменов. Кроме того, магнитные моменты отдельных доменов могут поворачиваться по полю. В результате магнитный момент образца увеличивается.

На рис. 1 изображена зависимость магнитного момента М ферромагнитного образца от напряжённости Н внешнего магнитного поля (кривая намагничивания). В достаточно сильном магнитном поле образец намагничивается до насыщения (при дальнейшем увеличении поля значение М практически не изменяется, точка А). При этом образец состоит из одного домена с магнитным моментом насыщения M s , направленным по полю. При уменьшении напряжённости внешнего магнитного поля Н магнитный момент образца М будет уменьшаться по кривой I преимущественно за счёт возникновения и роста доменов с магнитным моментом, направленным против поля. Рост доменов обусловлен движением доменных стенок. Это движение затруднено из-за наличия в образце различных дефектов (примесей, неоднородностей и т.п.), которые закрепляют доменные стенки в некоторых положениях; требуются достаточно сильные магнитные поля для того, чтобы их сдвинуть. Поэтому при уменьшении поля Н до нуля у образца сохраняется т. н. остаточный магнитный момент M r (точка В).

Образец полностью размагничивается лишь в достаточно сильном поле противоположного направления, называемом коэрцитивным полем (коэрцитивной силой) Н с (точка С). При дальнейшем увеличении магнитного поля обратного направления образец вновь намагничивается вдоль поля до насыщения (точка D). Перемагничивание образца (из точки D в точку А) происходит по кривой II. Т. о., при циклическом изменении поля кривая, характеризующая изменение магнитного момента образца, образует петлю магнитного Г. Если поле Н циклически изменять в таких пределах, что намагниченность насыщения не достигается, то получается непредельная петля магнитного Г. (кривая III). Уменьшая амплитуду изменения поля Н до нуля, можно образец полностью размагнитить (прийти в точку О). Намагничивание образца из точки О происходит по кривой IV.

При магнитном Г. одному и тому же значению напряжённости внешнего магнитного поля Н соответствуют разные значения магнитного момента М. Эта неоднозначность обусловлена влиянием состояний образца, предшествующих данному (т. е. магнитной предысторией образца).

Вид и размеры петли магнитного Г., величина Н с в различных ферромагнетиках могут меняться в широких пределах. Например, в чистом железе Нс= 1 э, в сплаве магнико Нс= 580 э. На петлю магнитного Г. сильно влияет обработка материала, при которой изменяется число дефектов (рис. 2).

Площадь петли магнитного Г. равна энергии, теряемой в образце за один цикл изменения поля. Эта энергия идёт, в конечном счёте, на нагревание образца. Такие потери энергии называются гистерезисными. В тех случаях, когда потери на Г. нежелательны (например, в сердечниках трансформаторов, в статорах и роторах электрических машин), применяют магнитномягкие материалы, обладающие малым Нс и малой площадью петли Г. Для изготовления постоянных магнитов, напротив, требуются магнитножёсткие материалы с большим Нс.

С ростом частоты переменного магнитного поля (числа циклов перемагничивания в единицу времени) к гистерезисным потерям добавляются др. потери, связанные с вихревыми токами и магнитной вязкостью. Соответственно площадь петли Г. при высоких частотах увеличивается. Такую петлю иногда называют динамической петлей, в отличие от описанной выше статической петли.

От магнитного момента зависят многие др. свойства ферромагнетика, например электрическое сопротивление, механическая деформация. Изменение магнитного момента вызывает изменение и этих свойств. Соответственно наблюдается, например, гальваномагнитный Г., магнитострикционный Г.

Диэлектрический Г. наблюдается обычно в сегнетоэлектриках, например титанате бария. Зависимость поляризации Р от напряжённости электрического поля Е в сегнетоэлектриках (рис. 3) подобна зависимости М от Н в ферромагнетиках и объясняется наличием спонтанной электрической поляризации, электрических доменов и трудностью перестройки доменной структуры. Гистерезисные потери составляют большую часть диэлектрических потерь в сегнетоэлектриках.

Поскольку с поляризацией связаны др. характеристики сегнетоэлектриков, например деформация, то с диэлектрическим Г. связаны др. виды Г., например пьезоэлектрический Г. (рис. 4), Г. электрооптического эффекта. В некоторых случаях наблюдаются двойные петли диэлектрического Г. (рис. 5). Это объясняется тем, что под влиянием электрического поля в образце происходит фазовый переход с перестройкой кристаллической структуры. Такого рода диэлектрический Г. тесно связан с Г. при фазовых переходах.

Упругий Г., т. е. гистерезисная зависимость деформации и от механического напряжения s, наблюдается в любых реальных материалах при достаточно больших напряжениях (рис. 6). Упругий Г. возникает всякий раз, когда имеет место пластическая (неупругая) деформация (см. Пластичность). Пластическая деформация обусловлена перемещением дефектов, например дислокаций, всегда присутствующих в реальных материалах. Примеси, включения и др. дефекты, а также сама кристаллическая решётка стремятся удержать дислокацию в определенных положениях в кристалле. Поэтому требуются напряжения достаточной величины, чтобы сдвинуть дислокацию. Механическая обработка и введение примесей приводят к закреплению дислокаций, в результате чего происходит упрочнение материала, пластическая деформация и упругий Г. наблюдаются при больших напряжениях. Энергия, теряемая в образце за один цикл, идёт в конечном счёте на нагревание образца. Потери на упругий Г. дают вклад во внутреннее трение. В случае упругих деформаций, помимо гистерезисных, есть и др. потери, например обусловленные вязкостью. Величина этих потерь, в отличие от гистерезисных, зависит от частоты изменения s (или и). Иногда понятие "упругий Г." употребляется шире - говорят о динамической петле упругого Г., включающей все потери на данной частоте.

Лит.: Киренский Л. В., Магнетизм, 2 изд., М., 1967; Вонсовский С. В., Современное учение о магнетизме, М. - Л., 1952; Бозорт Р., Ферромагнетизм, пер. с англ., М., 1956; Иона Ф., Ширане Д., Сегнетоэлектрические кристаллы, пер. с англ., М., 1965; Постников В. С., Внутреннее трение в металлах, М., 1969; Физический энциклопедический словарь, т. 1, М., 1960.

А. П. Леванюк, Д. Г. Санников.

Похожие статьи

© 2024 my-kross.ru. Кошки и собаки. Маленькие животные. Здоровье. Лекарство.