Две формы клеточной организации живой материи. Клетка – как универсальная форма организации живой материи. Основные структурные компоненты эукариотической клетки и их характеристика. Вопросы для повторения и задания

Материи - это условное обозначение, принятое для классификации всех живых организмов на нашей планете. Живая природа Земли поистине разнообразна. Организмы могут принимать различные размеры: начиная от простейших и одноклеточных микробов, переходя к многоклеточным существам, и заканчивая самыми крупными животными на земле - китами.

Эволюция на Земле происходила таким образом, что организмы развивались от простейших (в прямом смысле) к более сложным. Так, то возникая, то исчезая, новые виды совершенствовались в ходе эволюции, принимая все более причудливый облик.

Чтобы систематизировать это невероятное количество живых организмов, и были введены уровни организации живой материи. Дело в том, что, несмотря на различия во внешнем виде и в строении, все организмы живой природы имеют общие черты: они так или иначе состоят из молекул, имеют в своем составе повторяющиеся элементы, в том или ином смысле - общие функции органов; они питаются, размножаются, стареют и умирают. Иными словами, свойства живого организма, несмотря на внешние различия, схожи. Собственно, ориентируясь на эти данные, можно проследить, как проходила эволюция на нашей планете.

2. Надмолекулярный или субклеточный. Уровень, на котором происходит структуризация молекул в органоиды клетки: хромосомы, вакуоли, ядро и т. д.

3. Клеточный. На этом уровне материя представлена в виде элементарной функциональной единицы - клетки.

4. Органно-тканевый уровень. Именно на этом уровне образуются все органы и ткани живого организма вне зависимости от их сложности: головной мозг, язык, почка и др. При этом следует иметь в виду, что ткань - совокупность клеток, объединенных общим строением и функцией. Орган - часть организма, в «обязанности» которой входит выполнение четко определенной функции.

5. Онтогенетический или организменный уровень. На этом уровне различные по функциональности органы объединяются в целостный организм. Говоря иначе, этот уровень представлен уже целостным индивидом любого вида.

6. Популяционно-видовой. Организмы или индивиды, имеющие сходное строение, функции и схожий облик и тем самым относящиеся к одному виду, включаются в одну популяцию. В биологии под популяцией понимают совокупность всех особей данного вида. В свою очередь, все они образуют генетически единую и обособленную систему. Популяция обитает в определенном месте - ареале и, как правило, не пересекается с представителями других видов. Вид, в свою очередь, представляет собой совокупность всех популяций. Живые организмы могут скрещиваться и производить потомство лишь в рамках своего вида.

7. Биоценотический. Уровень, на котором живые организмы объединяются в биоценозы - совокупность всех популяций, проживающих на конкретной территории. Принадлежность к тому или иному виду в этом случае не имеет значения.

8. Биогеоценотический. Этот уровень обусловлен образованием биогеоценозов, то есть совокупности биоценоза и неживых факторов (почва, климатические условия) в той области, где биоценоз обитает.

9. Биосферный. Уровень, объединяющий все живые организмы на планете.

Таким образом, уровни организации живой материи включают в себя девять пунктов. Подобная классификация определяет существующую в современной науке систематизацию живых организмов.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Введение

3. Клетка как морфофункциональная единица живой материи

4. Организм как основа целостности живой системы

5. Заключение

6. Список литературы

1. Введение

Современная биологическая картина мира основывается на том, что мир живого - это колоссальная система высокоорганизованных систем. В современной биологии классическими уровнями данной системы, которая определяется как живая материя, являются следующие:

1. Молекулярно-генетический уровень является тем уровнем организации живой материи, на котором совершался переход от атомно-молекулярного уровня неживой материи к макромолекулам живой. Это уровень функционирования биополимеров, таких как белки, нуклеиновые кислоты, полисахариды. На этом уровне элементарными структурными единицами являются гены. Вся наследственная информация у живых организмов заложена в молекулах ДНК. Реализация этой информации связана с участием молекул РНК.

2. Клеточный и субклеточный уровни отражают процессы специализации клеток, а также различные внутриклеточные включения.

3. Организменный и органно-тканевой уровни отражают признаки отдельных особей, их строение, физиологию, поведение, а также строение и функции органов и тканей живых существ.

4. Популяционно-видовой уровень образуется свободно скрещивающимися между собой особями одного и того же вида. Его изучение важно для выявления факторов, влияющих на численность популяций. Этот уровень важен также с точки зрения исследования путей исторического развития живого, его эволюции.

5. Уровень биогеоценозов выражает следующую ступень структуры живого. Под биогеоценозами понимаются участки Земли с определенным составом тесно взаимосвязанных живых и неживых компонентов, представляющих единый природный комплекс, экосистему. Рациональное использование природы невозможно без знания структуры и функционирования биогеоценозов, или экосистем.

6. Биосферный уровень включает всю совокупность живых организмов Земли, существующих в тесной взаимосвязи с окружающей природной средой. На этом уровне биологической наукой решается такая актуальная ныне проблема, как регулирование процесса концентрации углекислого газа в атмосфере. Исследуя биосферный уровень организации живого, ученые выяснили, что в последнее время в результате значительного усиления хозяйственной активности и слабой природоохранной деятельности концентрация двуокиси углерода в атмосфере планеты стала возрастать. В результате возникла опасность глобального повышения температуры, возникновения так называемого «парникового эффекта», увеличения в ряде районов количества осадков до масштабов Всемирного потопа.

Представление о структурных уровнях организации живых систем сформировалось под влиянием открытия клеточной теории строения тел. В середине 19 века клетка рассматривалась как последняя единица живой материи, наподобие атома неорганических тел (М.Шлейден и Э.Геккель). Но оставался вопрос, на который не могла ответить клеточная теория: от каких именно структур зависят свойства живых организмов. Поэтому ученые-экспериментаторы продолжали свои работы в области исследования клеточных структур. В ходе этих работ был получен следующий результат: белки построены из 20 аминокислот, которые соединены длинными полипептидными связями. 9 из этих аминокислот являются незаменимыми, остальные синтезируются самим организмом. Характерная особенность аминокислот состоит в том, что все они являются левовращающими плоскость поляризации изомерами, хотя существуют аминокислоты и правого вращения. Обе формы таких изомеров почти одинаковы между собой и различаются только пространственной конфигурацией, и поэтому каждая из молекул аминокислот является зеркальным отображением другой. Впервые это явление открыл Л.Пастер. Он обнаружил, что вещества биологического происхождения способны отклонять поляризованный луч. Эти вещества впоследствии были названы оптическими изомерами. В отличие от этого у молекул неорганических веществ эта способность отсутствует и построены они симметрично. На основе своих опытов Л.Пастер высказал мысль о том, что важнейшим свойством всей живой материи является их молекулярная асимметричность, подобная асимметричности левой и правой рук. Это свойство было названо молекулярной хиральностью. Долгое время в связи с изучением структуры белка, появились мнения о том, что белки составляют фундаментальную основу жизни (Ф.Энгельс). Наряду с изучением структуры белка интенсивно изучались механизмы наследственности и воспроизводства живых систем. Наиболее важным открытием на этом пути было выделение из состава ядра клетки богатого фосфором вещества, которое впоследствии назвали нуклеиновой кислотой. Существует два типа нуклеиновых кислот: дезоксирибонуклеиновые и рибонуклеиновые кислоты. В 1944 году Д.Уотсон и Ф.Крик предложили и экспериментально подтвердили гипотезу о строении молекулы ДНК как материального носителя информации. Согласно теории Уотсона и Крика наследственную информацию в молекуле ДНК несет последовательность четырех оснований: два пуриновых и два пиримидиновых (1953 год). Гипотетическое объяснение механизма перевода четырехбуквенной записи структуры ДНК в 20-буквенную дал Г.Гамов, предположив, что для кодирования одной аминокислоты требуется сочетание из трех нуклеотидов ДНК. Спустя семь лет эта гипотеза была подтверждена экспериментально. В 60-ые годы Ф.Жакоб и Ж.Моно доказали, что по своей функциональной активности все гены разделяются на «регуляторные», кодирующие структуру белка, и «структурные», кодирующие синтез метаболитов. Переход на молекулярный уровень исследования изменил представления о механизме изменчивости. Кроме мутаций были названы механизмы рекомбинации генов.

2. Доклеточные формы организации живой материи

материя клетка морфофункциональный система

Единственными представителями доклеточной организации живой материи являются вирусы.

Вирус - это неклеточный инфекционный агент, который может воспроизводиться только внутри живых клеток.

На сегодняшний день детально описано свыше пяти тысяч видов вирусов. Учеными предполагается существование миллионов видов. Изучением вирусов занимается вирусология. Вирусология является разделом микробиологии.

Вирусы способны поражать все типы организмов: от бактерий и архей до растений и животных. Вирусы, поражающие бактерии называют бактериофагами. Вирусы, которые поражают другие вирусы называются сателлитами.

История изучения вирусов началась со статьи Ивановского Дмитрия Иосифовича, описывающей небактериальный патоген растений табака. А первым открытым и официально описанным вирусом стал вирус табачной мозаики, открытый голландцем Мартином Бейеринком в 1898 году.

Происхождение

Происхождение вирусов неясно, поскольку они не оставляют каких бы то ни было ископаемых останков, однако существует три основных теории их происхождения:

2. Гипотеза клеточного происхождения (гипотеза кочевания/побега). Некоторые вирусы могли появиться из фрагментов ДНК или РНК, высвободившихся из генома более крупного организма. Такие фрагменты могут происходить от плазмид - молекул ДНК, способных передаваться от клетки к клетке) или от транспозонов (молекул ДНК, реплицирующихся и перемещающихся с места на место внутри генома.

3. Гипотеза коэволюции. Эта гипотеза предполагает, что вирусы возникли из сложных комплексов белков и нуклеиновых кислот в то же время, что и первые на Земле живые клетки, и зависят от клеточной жизни вот уже миллиарды лет.

Строение вирусов

Вирусные частицы, называемые варионами, состоят из трех компонентов:

1. Генетический материал. ДНК или РНК. Некоторые виды имеют оба типа молекул.

2. Капсид - белковая оболочка. Служит для защиты ДНК/РНК.

3. Дополнительные липидные оболочки.

По первому признаку вирусы делят на ДНК - содержащие и РНК - содержащие. На этом принципе основана классификация вирусов по Балтимору. Классификация ICTV разделяет вирусы на отряды, семейства, подсемейства, роды и виды.

Капсиды вирусов разделяют на четыре класса:

1. Спиральный

2. Икосаэдрический

3. Продолговатый

4. Комплексный

Средний вирус примерно в сто раз меньше средней бактерии. Поэтому большинство из них неразличимы под световым микроскопом.

Жизненный цикл

Обычно выделяют шесть этапов жизненного цикла вируса:

1. Прикрепление - это образование специфичной связи между белками вирусного капсида и рецепторами на поверхности клетки-хозяина. Специфичность связывания определяет круг хозяев вируса.

2. Проникновение в клетку.

3. Лишение оболочек - процесс потери капсида.

4. Репликация вирусов.

5. Сборка вирусных частиц.

6. Выход из клетки.

4. Клетка как морфофункциональная единица живого

Клетка - элементарная единица живого организма.

Все живое состоит из клеток как отдельных единиц и размножается из клеток, поэтому клетка считается мельчайшей единицей всего живого. Клетка обладает всеми признаками живого, ей свойственны раздражимость, обмен веществ, самоорганизация и саморегуляция, передача наследственных признаков. Клетка - это сложное, самоорганизующееся образование органоидов, являющееся микроносителем жизни, так как в каждой клетке заключена генетическая информация, достаточная для воспроизведения всего организма. Все организмы состоят из одной или многих клеток. Размеры клеток варьируются от 0,1 мкм до 155 мм (яйцо страуса в скорлупе).

Жизнь каждой клетки подчинена деятельности всего организма в целом. Клетки многоклеточных организмов неспособны к существованию в открытой среде, за исключением одноклеточных организмов - бактерий, простейших водорослей, грибов. Составляющие клетку части лишены жизненных способностей. Клетки, выделенные из различных тканей живых организмов и помещенные в специальную питательную среду, могут расти и размножаться. Такая способность клеток широко используется в исследовательских и прикладных целях.

Несмотря на большое разнообразие и существенные различия во внешнем виде и функциях, все клетки состоят из трех основных частей - плазматической мембраны, контролирующей переход вещества из окружающей среды в клетку и обратно, цитоплазмы с разнообразной структурой и клеточного ядра, содержащего носитель генетической информации - ДНК. Все животные и некоторые растительные клетки содержат центриоли - цилиндрические структуры диаметром около 0,15 мкм, образующие клеточные центры. Обычно растительные клетки окружены оболочкой - клеточной стенкой. Кроме того, они содержат пластиды - цитоплазматические органоиды (специализированные структуры клеток), нередко содержащие пигменты, обусловливающие их окраску.

Рис. 1 Строение животной (А) и растительной (Б) клеток

Окружающая клетку мембрана состоит из двух слоев молекул жироподобных веществ, между которыми находятся молекулы белков. Главная функция клетки - обеспечить передвижение вполне определенных веществ в прямом и обратном направлениях к ней. В частности, мембрана поддерживает нормальную концентрацию некоторых солей внутри клетки и играет важную роль в ее жизни: при повреждении мембраны клетка сразу гибнет, в то же время без некоторых других структурных компонентов жизнь клетки может продолжаться в течение некоторого времени. Первым признаком умирания клетки являются начинающиеся изменения в проницаемости ее наружной мембраны.

Внутри клеточной плазматической мембраны находится цитоплазма , содержащая водный соляной раствор с растворимыми и взвешенными ферментами, (как в мышечных тканях) и другими веществами. В цитоплазме располагаются разнообразные органеллы - маленькие органы, окруженные своими мембранами. К органеллам, в частности, относятся митохондрии -мешковидные образования с дыхательными ферментами. В них превращается сахар и высвобождается энергия. В цитоплазме есть и небольшие тельца - рибосомы, состоящие из белка и нуклеиновой кислоты (РНК), с помощью которых осуществляется синтез белка. Внутриклеточная среда достаточно вязкая, хотя 65-85% массы клетки составляет вода.

Во всех жизнеспособных клетках, за исключением бактерий, содержится ядро , а в нем - хромосомы - длинные нитевидные тельца, состоящие из дезоксирибонуклеиновой кислоты и присоединенного к ней белка. В многоклеточном организме все сложные проявления жизни возникают в результате согласованной активности составляющих его клеток.

Жизненно важными функциями клетки являются подвижность, раздражимость, метаболизм и размножение. Подвижность клетки выражается во внутриклеточной циркуляции содержимого клетки, перетекании, биении крошечных протоплазматических выростов, сократимости. Раздражимость определяется способностью клетки воспринимать стимул и реагировать на него импульсом или волной возбуждения. Это наиболее свойственно нервным клеткам организмов. Метаболизм включает все превращения вещества и энергии, происходящие в клетках.

Важнейшей функцией клетки является ее размножение путем деления и образования дочерних клеток. По мере роста клетки ухудшается питание её отдельных элементов, способность управления внутренними процессами клетки снижается, клетка приходит в неустойчивое состояние. Далее происходит деление клетки на две дочерние, как выход из неустойчивого состояния, новообразованные клетки обретают устойчивость до момента следующего деления. При делении дочерней клетки передается полный набор хромосом, несущих генетическую информацию. Поэтому перед делением число хромосом в клетке удваивается и при делении каждая дочерняя клетка получает по одному их набору. В любом организме на протяжении всей его жизни идёт процесс замены старых клеток на образующиеся новые. Средний срок жизни клеток человека - один-два дня, а общее количество клеток - примерно 10 15 . Именно способность воспроизводить самих себя, а не только способность расти и питаться и позволяет считать клетки мельчайшими единицами живого.

Основные структурные различия между животными и растительными клетками немногочисленны. Во-первых, животные клетки, в отличие от растительных (исключая низшие растения), содержат небольшие тельца - центриоли , расположенные в цитоплазме. Во-вторых, как уже говорилось, клетки растений имеют в своей цитоплазме белковые образования - пластиды, которых нет у животных. И в-третьих, клетки растений обладают упомянутой ранее клеточной стенкой, благодаря которой они сохраняют свою форму. Животные клетки располагают лишь тонкой плазматической мембраной и поэтому способны двигаться и менять форму.

В зависимости от типа клеток все организмы делятся на две группы - прокариот и эукариот. К прокариотам относятся бактерии, а к эукариотам - все остальные организмы: простейшие, грибы, растения и животные. Эукариоты могут быть одноклеточными и многоклеточными. Предполагается, что первыми организмами, появившимися около 4-3,5 млрд. лет назад, были прокариоты.

Роль клетки в эволюции живого

Появление первой примитивной клетки стало началом биологической эволюции жизни на планете. Что послужило причиной возникновения именно живой клетки из неживого, до сих пор неизвестно, существует несколько гипотез, однако большинство из них говорит о том, что имел место некий доклеточный предок - протобионт , из которого впоследствии сформировалась древнейшая клетка. Механизм перехода от сложных органических веществ к простым живым организмам наукой пока не установлен. Теория биохимической эволюции, предложенная ученым А.И. Опариным в 20-х гг., предлагает лишь общую схему. В соответствии с ней между первичными сгустками органических веществ (коацерватов) могли выстраиваться молекулы сложных углеводородов, что приводило к образованию примитивной клеточной мембраны, обеспечивающей данным сгусткам стабильность. Именно с появлением мембраны можно говорить о рождении клетки - основной структурной единицы жизни, способной к росту и размножению. Очевидно, археклетка была отграничена от внешней среды двухслойной оболочкой (мембраной), обладала способностью всасывать через нее протоны, ионы и маленькие молекулы, а ее метаболизм основывался на низкомолекулярных углеродных соединениях. Для строения археклетки характерно наличие клеточного скелета, отвечавшего за целостность клетки, а также обеспечивавшего возможность ее деления.

Первыми возникшими на Земле одноклеточными организмами были примитивные бактерии, не обладавшие ядром - прокариоты. Они жили в безкислородной среде и питались готовыми органическими соединениями - веществами, синтезированными в процессе химической эволюции. Однако по мере наполнения атмосферы земли кислородом, многим бактериям пришлось приспособиться к кислородному дыханию - фотосинтезу, что явилось поворотом в эволюции живого. Фотосинтез ускорял биологический круговорот веществ и эволюцию живого в целом. Долго длившийся процесс перехода к фотосинтезу привел примерно 2,6 млрд. лет назад к возникновению первых, имеющих ядро организмов - эукариотов. Это были более совершенные организмы, в ядре которых были сконцентрированы хромосомы с ДНК, сама клетка воспроизводилась уже без серьёзных изменений.

Последующая эволюция эукариотов связана с разделением этих организмов на животные и растительные (примерно 2,6 млрд. - 570 млн. лет назад). Растительные клетки эволюционировали в сторону развития жесткой целлюлозной оболочки клеток и активного использования фотосинтеза, животные же клетки «выбрали» увеличение способности к передвижению, а также усовершенствовали способы поглощать и выделять продукты переработки пищи.

Следующими важными этапами в эволюции живого мира стало половое размножение (около 900 млн. лет назад) и появление многоклеточных организмов с телом, тканями и органами, выполняющими определённые функции (700-800 млн. лет назад). Это были губки, черви, членистоногие и т.п. К тому времени мировой океан уже заселяли водоросли.

Подводя итог, можно сказать, что именно выделение живой самостоятельной клетки из окружающей среды и стало толчком к началу эволюции жизни на земле и роль клетки в развитии всего живого является главенствующей.

3. Организм как основа целостности живой системы

Организм - любое живое существо. Он отличается от неживой природы определенной совокупностью свойств, присущих только живой материи: клеточная организация; обмен веществ при ведущей роли белков и нуклеиновых кислот, обеспечивающий гомеостаз организма - самовозобновление и поддержание постоянства его внутренней среды. Живым организмам присущи движение, раздражимость, рост, развитие и наследственность, а также приспособляемость к условиям существования - адаптация.

Взаимодействуя с абиотической средой, организм выступает как целостная система, включающая в себя все более низкие уровни биологической организации. Все эти части организма (гены, клетки, клеточные ткани, целые органы и их системы) являются компонентами и системами доорганизменного уровня. Изменение одних частей и функций организма неизбежно влечет за собой изменение других. Так, в изменяющихся условиях существования, в результате естественного отбора те или иные органы получают приоритетное развитие. Например, мощная корневая система у растений засушливой зоны (ковыль) или «слепота» в результате редукции глаз у ночных животных, существующих в темноте (крот).

Живые организмы обладают обменом веществ, или метаболизмом, при этом происходит множество химических реакций. Примером таких реакций могут служить дыхание, которое еще Лавуазье и Лаплас считали разновидностью горения, или фотосинтез, посредством которого зелеными растениями связывается солнечная энергия, а результаты дальнейших процессов метаболизма используются всем растением.

Как известно, в процессе фотосинтеза кроме солнечной энергии используются двуокись углерода и вода. Суммарно химическое уравнение фотосинтеза выглядит так:

Солнечная энергия + 6СО 2 +12Н 2 О >С 6 Н 12 О 6 + 6О 2 ,

где С 6 Н 12 О 6 - богатая энергией молекула глюкозы.

Практически вся двуокись углерода (СО 2) поступает из атмосферы, и днем ее движение направлено вниз к растениям, где осуществляется фотосинтез и выделяется кислород. Дыхание - процесс обратный, и движение СО 2 ночью направлено вверх, и идет поглощение кислорода.

Некоторые микроорганизмы, бактерии способны создавать органические соединения и за счет других компонентов, например за счет соединений серы. Такие процессы называются хемосинтезом.

Обмен веществ в организме происходит только при участии особых макромолекулярных белковых веществ - ферментов, выполняющих роль катализаторов. Каждая биохимическая реакция в процессе жизни организма контролируется особым ферментом, который в свою очередь контролируется единичным геном. Изменение гена, называемое мутацией, приводит к изменению биохимической реакции вследствие изменения фермента, а в случае нехватки последнего - к выпадению соответствующей ступени метаболической реакции.

Однако не только ферменты регулируют процессы метаболизма. Им помогают коферменты - это крупные молекулы, частью которых являются витамины - вещества, необходимые для обмена веществ всех организмов - бактерий, зеленых растений, животных и человека. Отсутствие витаминов ведет к болезням - нарушается обмен веществ.

Наконец для ряда метаболических процессов необходимы особые химические вещества, называемые гормонами, которые вырабатываются в различных местах (органах) организма и доставляются в другие места кровью или посредством диффузии. Гормоны осуществляют в любом организме общую химическую координацию метаболизма и помогают, например, нервной системе животных и человека.

На молекулярно-генетическом уровне особенно чувствительно воздействие загрязняющих веществ, ионизирующей и ультрафиолетовой радиации. Оно вызывает нарушение генетических систем, структуры клеток и подавляет действие ферментных систем. Все это приводит к болезням человека, животных и растений, угнетению и даже уничтожению видов, живых организмов.

Метаболические процессы протекают с различной интенсивностью на протяжении всей жизни организма, всего пути его индивидуального развития. Этот его путь от зарождения и до конца жизни называется онтогенезом. Он представляет собой совокупность последовательных морфологических, физиологических и биохимических преобразований, претерпеваемых организмом за весь период жизни.

Онтогенез включает рост организма, т.е. увеличение массы и размеров тела, и дифференциацию, т.е. возникновение различий между однородными клетками и тканями, приводящее их к специализации по выполнению различных функций в организме. У организмов с половым размножением онтогенез начинается с оплодотворенной клетки (зиготы), при бесполом размножении - с образования нового организма путем деления материнского тела или специализированной клетки, путем почкования, а также от корневища, клубня, луковицы и т.п.

Каждый организм в онтогенезе проходит ряд стадий развития. Для организмов, размножающихся половым путем, различают зародышевую (эмбриональную), послезародышевую (постэмбриональную) и период развития взрослого организма. Зародышевый период заканчивается выходом зародыша из яйцевых оболочек, а у живородящих - рождением. Важное экологическое значение для животных имеет первоначальный этап послезародышевого развития, протекающий по типу прямого развития или по типу метаморфоза. В первом случае идет постепенное развитие во взрослую форму (цыпленок - курица и т.д.), во втором развитие происходит в виде личинки, которая существует и питается самостоятельно, прежде чем превратиться во взрослую особь (головастик - лягушка). У ряда насекомых личиночная стадия позволяет пережить неблагоприятное время года (низкие температуры, засуху и т.д.).

В онтогенезе растений различают рост, развитие (формируется взрослый организм) и старение (ослабление биосинтеза всех физиологических функций и смерть). Основной особенностью онтогенеза высших растений и большинства водорослей является чередование бесполого (спорафита) и полового (гематофита) поколений. Процессы и явления, проходящие на онтогенетическом уровне, т.е. на уровне индивида (особи), - это необходимое и весьма существенное звено функционирования всего живого. Процессы онтогенеза могут быть нарушены на любой стадии действием химического, светового и теплового загрязнения среды и привести к появлению уродов или даже к гибели индивидов на послеродовой стадии онтогенеза.

Современный онтогенез организмов сложился в течение длительной эволюции, в результате их исторического развития - филогенеза. Не случайно этот термин ввел Э.Геккель в 1866 г., так как для целей экологии необходима реконструкция эволюционных преобразований животных, растений и микроорганизмов. Этим занимается наука - филогенетика, базирующаяся на данных трех наук - морфологии, эмбриологии и палеонтологии.

Взаимосвязь между развитием живого в историко-эволюционном плане и индивидуальным развитием организма сформулирована Э.Геккелем в виде биогенетического закона: онтогенез всякого организма есть краткое и сжатое повторение филогенеза данного вида. Иными словами, в начале в утробе матери (у млекопитающих и др.), а затем, появившись на свет, индивид в своем развитии повторяет в сокращенном виде историческое развитие своего вида.

5. Заключение

В современной науке широко используется метод структурного анализа, при котором учитывается системность исследуемых объектов. Ведь структурность - это внутренняя расчлененность материального бытия, способ существования материи.

Структурные уровни организации материи строятся по принципу пирамиды: высшие уровни состоят из многочисленного числа низших уровней. Низшие уровни являются основой существования материи. Без этих уровней невозможно дальнейшее построение «пирамиды материи». Высшие уровни образуются путём эволюции - постепенно переходя от простого к сложному. Структурные уровни материи образованы из определенного множества объектов какого-либо вида и характеризуются особым способом взаимодействия между составляющими их элементами.

Все объекты живой и неживой природы можно представить в виде определенных систем, обладающих конкретными особенностями и свойствами, характеризующими их уровень организации. С учетом уровня организации можно рассматривать иерархию структур организации материальных объектов живой и неживой природы. Такая иерархия структур начинается с элементарных частиц, представляющих собой первоначальный уровень организации материи, и заканчивается живыми организациями и сообществами -- высшими уровнями организации.

Концепция структурных уровней живой материи включает представления системности и связанной с ней органической целостности живых организмов. Однако история теории систем начиналась с механистического понимания организации живой материи, в соответствии с которым все высшее сводилось к низшему: процессы жизнедеятельности -- к совокупности физико-химических реакций, а организация организма -- к взаимодействию молекул, клеток, тканей, органов и т.п.

Список литературы

1. Биологический энциклопедический словарь. М.: Большая российская энциклопедия, 1989.

2. Данилова В.С. Основные концепции современного естествознания: Учеб. пособие для вузов. М., 2000.

3. Медавар П., Медавар Дж. Наука о живом. Современные концепции в биологии. М.: Мир, 1983.

4. Реймерс Н.Ф. Популярный биологический словарь. М.: Наука, 1994.

5. Рузавин Г.И. Концепции современного естествознания: Учебник для вузов. М., 2003.

6. Слюсарев А.А., Жукова С.В. Биология. Киев: Вища школа, 1987.

Размещено на Allbest.ru

...

Подобные документы

    Уровни организации живой материи. Клеточная мембрана, поверхностный аппарат клетки, ее части и их назначение. Химический состав клетки (белки, их структура и функции). Обмен веществ в клетке, фотосинтез, хемосинтез. Мейоз и митоз – основные различия.

    контрольная работа , добавлен 19.05.2010

    Развитие неживой и живой природы. Структура и ее роль в организации живых систем. Современный взгляд на структурную организацию материи. Проблемы самоорганизации, изучаемые в синергетике, законы построения организации и возникновения упорядоченности.

    контрольная работа , добавлен 31.01.2010

    Уровни организации живой материи. Положения клеточной теории. Органоиды клетки, их строение и функции. Жизненный цикл клетки. Размножение и его формы. Наследственность и изменчивость как фундаментальные свойства живого. Закон моногибридного скрещивания.

    шпаргалка , добавлен 03.07.2012

    Характеристика основных структурных уровней организации живой материи: молекулярного, клеточного, организменного, популяционно-видового, биогеоценотического, биосферного. Их компоненты, основные процессы. Науки, ведущие исследования на данных уровнях.

    презентация , добавлен 09.11.2012

    Гравитационное и электромагнитное взаимодействия. Краткая сводка основных формул классической (неквантовой) электродинамики. Уровни организации живой материи и их характеристика. Пример нескольких каталитических реакций. Принцип действия катализатора.

    контрольная работа , добавлен 17.07.2010

    Электромагнитные взаимодействия как определяющий уровень организации материи. Сущность живого, его основные признаки. Структурные уровни организации живой материи. Предмет биологии, ее структура и этапы развития. Основные гипотезы происхождения жизни.

    лекция , добавлен 18.01.2012

    Определение понятия клетки как структурной и функциональной единицы живой материи. Выделение прокариотического и эукариотического типов клеточной организации. Догадки писателей-фантастов, древних и средневековых мыслителей о возможности иных форм жизни.

    реферат , добавлен 14.08.2011

    История изучения клетки. Открытие и основные положения клеточной теории. Основные положения теории Шванна-Шлейдена. Методы изучения клетки. Прокариоты и эукариоты, их сравнительная характеристика. Принцип компартментации и поверхность клетки.

    презентация , добавлен 10.09.2015

    Главная особенность организации живых материй. Процесс эволюции живых и неживых систем. Законы, лежащие в основе возникновения всех форм жизни по Дарвину. Молекулярно-генетический уровень живых организмов. Прогрессия размножения, естестенный отбор.

    реферат , добавлен 24.04.2015

    Признаки живой материи, которые отличают ее от неживой. Ферменты, их применение в пищевых технологиях. Отличие ферментов от небиологических катализаторов. Органы и ткани животных. Углеводы, получаемые из растительного сырья. Полисахариды второго порядка.

Клетка - это основная единица живого (биологической активности), ограниченная полупроницаемой мембраной и способная к самовоспроизведению в среде, не содержащей живых систем. Жизнь начинается с клетки. Вне клеток нет жизни.

Первые исследования клеток восходят к XVII в., и, вероятно, принадлежат англичанину Роберту Гуку (1635-1703). Рассматривая под примитивным микроскопом срезы пробки (1665 г.), он обнаружил, что они состоят из ячеек, названных им клетками (от лат. cellula - ячейка, клетка). В дальнейшем ячеистое строение многих растений микроскопически наблюдали итальянец М. Маль-пиги (1628-1694) и англичанин Н. Грю (1641-1712), однако то, что они видели, сейчас мы называем клеточной стенкой клеток растений. В 1675 г. голландец А. Левенгук (1632-1723) впервые с помощью простого микроскопа увидел одноклеточные организмы (бактерии).

В 1825 г. чех Ян Пуркинье (1787-1869) увидел и описал внутреннее содержимое клетки, назвав его протоплазмой (от греч. protos первый, plasma - образование), а в 1831 г. англичанин Р. Броун (Г773-1858) обнаружил ядро клетки (от лат. nucleus, греч. сагуоn).

Важнейшим этапом в изучении клеток явились работы, обеспечивавшие фактическую основу для создания клеточной теории. В 1838 г. немецкий ботаник М. Шлейден (1804-1881) пришел к выводу, что ткани растений состоят из клеток, тогда как немецкий зоолог Т. Шванн (1810-1882) в 1839 г. к аналогичному выводу пришел, изучая строение клеток животных. Опираясь на данные о том, что клетки животных и растений имеют ядра, М. Шлейден и Т. Шванн в 1838-1839 гг. сформулировали клеточную теорию, содержавшую ряд важнейших положений, а именно:

а) Организмы состоят из клеток и продуктов их жизнедеятельности, причем клетки являются главной структурной единицей растений и животных;

б) Размножение клеток лежит в основе роста животных и растений.

Выдающийся вклад в последующее развитие клеточной теории принадлежит Р. Вирхову (1821-1902), сформулировавшему в 1855 г. очень важное положение «cellula e cellula» («каждая клетка из клетки»), означающее, что клетка может возникнуть лишь из предсу-. ществующей клетки и что других путей появления клеток не существует. Это положение имело не только фундаментальное значение, но и практическое, т. к. означало начало разработки основ клеточной патологии.

В дальнейшем важнейший вклад в развитие клеточной теории был обеспечен открытием хромосом и наблюдениями в 1879-1883 гг. деления клеток путем митоза (В. Флеминг, 1844-1905; В. Рут 1850-1924 и другие). Уже к концу XIX в. были описаны хромосомы, определено их гаплоидное и диплоидное число у ряда организмов, а также были определены и получили название фазы митоза. Тогда же состоялся синтез цитологии и генетики, а также вычленение самостоятельной проблематики под названием «Биология клетки».


В начале XX в. (1903) Р. Гертвиг (1850-1937) формулирует закон постоянства ядерно-плазменного отношения, а в 1905 г. Дж. Фармер и Дж. Мур вводят в научную литературу термин «мейоз», что способствовало лучшему пониманию деления и развития клеток. Но особенно прогресс учения о клетке был обеспечен введением в практику исследований фазово-контрастной и электронной микроскопии, а затем и метода меченых атомов. Уже в 50-е гг. нашего века были получены электронно-микроскопические изображения почти всех структур клетки.

Современный этап в развитии клеточной теории характеризуется дальнейшим обоснованием ее положений на основе результатов, полученных при изучении тонкого строения клеток, синтеза нуклеиновых кислот и белков, а также регуляции активности генов. Окончательное подтверждение получило важнейшее положение клеточной теории о том, что клетка является элементарной структурно-функциональной единицей живого, вне которой нет жизни, т. e. клетка является элементарной единицей структуры и функции многоклеточного организма. Клетки являются высокоорганизованными дифференцированными образованиями, а размножение клеток обеспечивает физическую основу генетической непрерывности между родительскими клетками и дочерними клетками. Установлено, что активность организмов зависит от активности его клеток и что рост, развитие и дифференцировка тканей зависят от образования новых клеток. Через клетки происходит поглощение, превращение, запасание и использование веществ и энергии. Структуры клеток являются ареной, на которой осуществляются многочисленные биологические реакции, в частности, ферментация, дыхание, фотосинтез, дупликация хромосом, причем эти процессы имеют место как у одноклеточных организмов, так и в клетках многоклеточных организмов. Можно сказать, что жизнь многоклеточных организмов основывается на жизни их клеток.


Биология - наука о жизни (от греч. биос - жизнь, логос - наука) - изучает закономерности жизни и развития живых существ. Термин «биология» был предложен немецким ботаником Г. Тревиранусом в 1802 г. и французским естествоиспытателем Ж.Ламарком в 1809 г. Биология относится к естественным наукам, так же как химия, физика, астрономия, геология. Современная биология представляет совокупность наук о живой природе. Каждая из биологических наук имеет свои объекты изучения, проблемы и использует различные методы исследования. Биология изучает все формы живых организмов, начиная от вирусов и заканчивая человеком, их строение, функции, развитие, происхождение, связь друг с другом и окружающей средой. Система биологических наук сложна что связано с многообразием форм жизни на Земле. 2



В биологии можно выделить дисциплины, изучающие морфологию, т. е. строение организмов, и физиологию, т. е. процессы, протекающие в живых организмах, и обмен веществ между организмом и средой. К морфологическим наукам относят, например, цитологию, исследующую строение клетки; гистологию - науку о тканях; анатомию - о форме и строении отдельных органов, систем и организма в целом. Различают анатомию человека, животных, растений. Изучением сходства и различий в строении животных занимается сравнительная анатомия. 4


Физиологические науки рассматривают процессы жизнедеятельности (функции) животных и растительных организмов, их отдельных систем, органов, тканей и клеток. Физиологию человека и животных подразделяют на несколько дисциплин, тесно связанных между собой. Выделяют общую физиологию, которая исследует общие закономерности реакции организма и его структур на воздействие факторов внешней среды, и частную специальную, которая изучает механизмы реагирования отдельных классов животных (например, птиц или млекопитающих) или отдельных органов (например, печени или легких) на внешние воздействия. Физиология растений исследует общие закономерности физиолого-биохимических процессов, их сущность и взаимосвязь жизни растения с окружающими условиями. 5


Наука о наследственности и изменчивости живых организмов названа генетикой. В зависимости от объекта исследования выделяют генетику растений, животных, микроорганизмов и человека. Изучением закономерностей индивидуального развития занимается эмбриология. Основная задача экологии - исследование взаимодействия между организмами и окружающей средой, позволяющей им выживать, развиваться и размножаться. Антропология - наука о происхождении человека и его рас. Эта наука не только биологическая, но и социальная, так как понимание биологической эволюции человека невозможно без изучения закономерностей развития человеческого общества. 6


Для современной биологии характерны высокая специализация дисциплин, входящих в нее, и комплексное взаимодействие с другими науками, например химией, физикой, математикой, и появление новых сложных дисциплин. Появление новых химических и физических методов исследования в биологии привело к возникновению таких наук, как биохимия, биофизика, молекулярная биология. Биохимия изучает химический состав живых организмов, превращение веществ в процессе их жизнедеятельности; биофизика - физические свойства и процессы в отдельных органах, тканях, клетках и организма в целом. Молекулярная биология исследует основные свойства и проявления жизни на молекулярном уровне. Молекулярная биология возникла в начале 1950-х гг. ХХ в. как результат накопления знаний о структуре и функциях белков и нуклеиновых кислот. Использование комплексных методов исследования позволило изучить структуры и функции генетического аппарата клеток, механизм реализации генетической информации и т.д. Возникли новые дисциплины, такие как молекулярная генетика, молекулярная вирусология и др. 7


Важное место в биологии занимают как теоретические, так и практические направления исследований. Первые позволяют делать открытия, которые обеспечивают успешное развитие прикладных дисциплин, могут быть использованы человеком в практической деятельности. Учитывая научные достижения и высокие темпы развития биологических наук, можно считать, что с середины ХХ в. начался век биологии. Молекулярно-генетический анализ ДНК применяется для идентификации личности, определения родства и других медицинских целей. Методы генной инженерии используют для получения генетически модифицированных продуктов питания, лечения некоторых заболеваний человека. Биологические науки представляют теоретическую основу медицины, агрономии, животноводства и других отраслей народного хозяйства. Например, знание законов генетики и селекции позволяет выводить новые высокопродуктивные породы животных и более урожайные сорта растений. Открытия, сделанные в генной инженерии, могут быть использованы в биотехнологии (для получения биологически активных веществ, антибиотиков, ферментов, гормональных препаратов и др.), при клонировании. 8


Основные свойства живого Химический состав. Живые существа состоят из тех же химических элементов, что и неживые, но в организмах есть молекулы веществ, характерных только для живого (нуклеиновых кислот, белков, липидов, углеводов). Химические вещества, входящие в состав живых организмов, имеют более сложное строение, чем неживая природа. В живых организмах 98 % химического состава приходится на четыре элемента: углерод, кислород, азот, водород. В неживой природе кроме кислорода основное значение имеют кремний, железо, магний и др. Химическая организация тесно связана с упорядоченностью структуры и функции любого организма. 9


Основные свойства живого Дискретность и целостность. Жизнь на земле проявляется в виде дискретных форм. Любая биологическая система (клетка, организм, вид и Т.Д.) состоит из отдельных частей, т.е. дискретна. Взаимодействие этих частей образует целостную систему. Например, в состав организма входят отдельные органы, связанные структур но и функционально в единое целое; любой вид организмов включает отдельные особи. Дискретность строения – основа структурной упорядоченности, создающая возможность самообновления и замены некоторых частей системы без нарушения выполняемых ими функций. Например, «изношенные» органеллы клетки (митохондрии и др.) разрушаются и заменяются новыми; нарушения выполняемых ими функций (клеточное дыхание, синтез АТФ (аденозинтрифосфорной кислоты) и др.) не происходит. 10


Основные свойства живого Структурная организация. Живые системы способны приводить в порядок хаотичное движение молекул, образуя определенные структуры. Для живого характерна упорядоченность в пространстве и времени. Это комплекс сложных саморегулирующихся процессов обмена веществ, протекающих в строго определенной последовательности, направленной на поддержание постоянства внутренней среды - гомеостаза. Сложность структурной организации живого прослеживается на всех уровнях. Открытые биологические системы неразрывно связаны с внешней средой, влияющей на процессы, протекающие в них. Например, в сложных сообществах организмов, называемых биоценозами, существуют многообразные взаимодействия и взаимозависимости между особями одного и разных видов, а также с окружающей их внешней средой. 11


Основные свойства живого Обмен веществ и энергии. Живые организмы - это открытые системы, совершающие постоянный обмен веществом и энергией с окружающей средой. Основу этого обмена составляют взаимосвязанные процессы ассимиляции и диссимиляции, которые происходят на клеточном уровне. Ассимиляция (уподобление) наблюдается в том случае, когда живой организм поглощает из внешней среды необходимые вещества и превращает их в вещества, специфичные для него. Этот процесс требует затраты энергии. При диссимиляции (процессе распада сложных веществ на простые) выделяется энергия, необходимая для реакции биосинтеза и конечные продукты распада. Обмен веществ обеспечивает постоянство химического состава всех частей организма. При изменении условий среды происходит саморегуляция жизненных процессов по принципу обратной связи, направленная на восстановление постоянства внутренней среды - гомеостаза. Например, продукты жизнедеятельности могут оказывать сильное и строго специфическое тормозящее воздействие нате ферменты, которые составили начальное звено в длинной цепи реакций. 12


Основные свойства живого Самовоспроизведение. Время существования любой биологической системы ограничено. Для поддержания жизни необходим процесс самовоспроизведения, связанный с образованием новых структур, несущих генетическую информацию, которая находится в молекулах ДНК. На молекулярном уровне самовоспроизведение осуществляется на основе матричного синтеза, т.е. новые молекулы синтезируются в соответствии с программой, заложенной в структуре ранее существовавших молекул. Живые существа, имея ограниченный срок жизни, размножаясь, оставляют после себя потомство. Размножение организмов всех видов, обитающих на Земле, поддерживает существование биосферы. 13


Основные свойства живого Наследственность. Молекула ДНК хранит и передает наследственную информацию благодаря матричному принципу репликации, обеспечивая материальную преемственность между поколениями. Наследственность - это способность организмов передавать из поколения в поколение при размножении свои признаки, свойства и особенности развития. Изменчивость. Это приобретение организмом новых признаков и свойств. При передаче наследственной информации иногда возникают различные отклонения, которые приводят к изменению признаков и свойств у потомков. Изменчивость обусловливает создание разнообразного материала для отбора наиболее приспособленных организмов к данным условиям среды. Если эти изменения благоприятствуют жизни, они закрепляются отбором. Так появляются новые виды. Наследственная изменчивость способствует эволюции видов. 14


Основные свойства живого Рост и развитие. Живая форма материи характеризуется индивидyaльным и историческим развитием. Организмы наследуют определенную генетическую информацию о возможности развития тех или иных признаков. Реализация информации происходит в процессе индивидуального развития - онтогенеза. На определенном этапе онтогенеза осуществляется рост организма (увеличение массы), связанный с репродукцией молекул, клеток и других биологических структур и их дифференцировка (появление различий в структуре и функциях). Рост сопровождается развитием, в результате которого возникает новое качественное состояние объекта, образуются новые структуры, способные выполнять определенные функции. Например, у растений развиваются новые ветви, которые отличаются по структуре от других. В неживой природе, например, рост кристалла происходит за счет добавления подобных структур. Историческое развитие - филогенез - сопровождается образованием новых видов. Таким образом возникло все многообразие живых организмов на Земле. 15


Основные свойства живого Раздражимость и движение. Способность живых организмов избирательно реагировать на внешние воздействия специфическими реакциями называют раздражимостью. Животные более активно реагируют на воздействие внешней среды. Растения реагируют медленнее. Реакция высокоорганизованных животных и человека на раздражение происходит посредством нервной системы и называется рефлексом. Раздражимость - универсальное свойство всех живых существ. Организмы отвечают на воздействие движением. Организмы, не имеющие нервной системы и ведущие прикрепленный образ жизни, в ответ на воздействие раздражителя совершают движения, называемые тропизмами. Например, фототропизм - это реакция на свет у растений. Одноклеточные животные и некоторые клетки многоклеточного организма, например лейкоциты, совершают движения, называемые таксисами. Реакцию на воздействие химических веществ называют хемотаксисом. Неживые объекты реагируют на окружающую среду пассивно. Например, если камень толкнуть, он пассивно сдвинется с места. 16


Основные свойства живого Саморегуляция. Проявление всех основных свойств, характеризующих жизнь, связано с саморегуляцией, т.е. способностью живых биологических систем автоматически поддерживать на определенном постоянном уровне физиологические и другие биологические показатели. При саморегуляции управляющие факторы не воздействуют извне на регулируемую систему, а непосредственно формируются в ней. Механизмы саморегуляции разнообразны и зависят от уровня организации живой материи. Саморегуляция всех процессов жизнедеятельности в организмах осуществляется по принципу обратной связи. Недостаток каких-либо веществ активизирует внутренние ресурсы организма, а их избыток откладывается в запас. Например, повышение концентрации глюкозы в крови приводит к усилению выработки гормона поджелудочной железы - инсулина, уменьшающего содержание сахара в ней. В свою очередь снижение уровня глюкозы в крови замедляет выделение гормона в кровяное русло. Избыток глюкозы под влиянием инсулина превращается в гликоген и откладывается в запас. 17


Уровни организации живой материи Молекулярно-генетический уровень. Любая живая система как бы сложно она не была организована, состоит из биологических макромолекул: белков, нуклеиновых кислот и других органических веществ. На молекулярно-генетическом уровне изучают физико- химические процессы, происходящие в организме (синтез и распад белков, нуклеиновых кислот, липидов, обмен веществ и энергии, копирование генетической информации). Отмечается однообразие дискретных единиц. Четыре азотистых основания входят в состав нуклеиновых кислот. Двадцать аминокислот образуют молекулы белка. Элементарная единица - ген - это участок молекулы ДНК, содержащий определенную генетическую информацию. Элементарное явление - это редупликация (самовоспроизведение) молекул ДНК, которая осуществляется по принципу матричного синтеза. Происходит копирование генетической информации, заключенной в генах, что обеспечивает преемственность и сохранность свойств организмов в последующих поколениях. При редупликации могут возникать различные нарушения, изменяющие генетическую информацию (генные мутации), составляющие основу изменчивости. 18


Уровни организации живой материи Клеточный уровень. Клетка - основная структурная, функциональная и генетическая единица организации всех живых организмов. Элементарное явление - реакции клеточного метаболизма. На клеточном уровне изучают строение клеток и клеточных компонентов. Метаболизм, происходящий на уровне клетки, необходим для осуществления жизни на других уровнях. 19


Уровни организации живой материи Онтогенетический уровень. Элементарной единицей жизни на этом уровне является особь (организм). На онтогенетическом уровне изучают процессы, происходящие в организме, начиная с момента его зарождения и до прекращения жизни: особенности строения, физиологии, механизмы адаптации, поведение и т.д. Изменения, происходящие в течение всего периода индивидуального развития особи, составляют элементарное явление на данном уровне. Характерно многообразие форм, связанное с пространственными комбинациями, которые обусловливают новые качественные особенности организма. Процессы нормального онтогенеза могут быть нарушены необычными воздействиями. Любые физико- химические факторы внешней среды, к которым у организмов нет приспособления, выработанного в процессе эволюции, могут отрицательно влиять на воспроизводство. Например, некоторые химические вещества обладают тератогенным (вызывающим различные уродства) действием. 20


Уровни организации живой материи Популяционно-видовой уровень. Элементарная единица - популяция - это совокупность особей одного вида, населяющих определенную территорию, способных скрещиваться между собой и частично или полностью изолированных от других популяций того же вида. В этой системе происходят элементарные эволюционные преобразования, такие как естественный отбор, мутации. На популяционно-видовом уровне изучают факторы, влияющие на численность популяций, их половой состав, проблемы сохранения исчезающих видов и др. 21


Уровни организации живой материи Биогеоценотический и биосферный уровни. Элементарная структура - биогеоценоз - это исторически сложившиеся устойчивые сообщества растений, животных и микроорганизмов, находящихся в постоянном взаимодействии с компонентами атмосферы, гидросферы и литосферы, т.е. целостная саморегулирующаяся и самоподдерживающаяся система. Биосфера представляет совокупность всех биогеоценозов, образующих единый комплекс, охватывающий все явления жизни на планете. Элементарное явление на биосферном уровне связано с круговоротом веществ и энергии, происходящим при участии живых организмов. 22


Все уровни организации живого тесно соединены между собой, что свидетельствует о целостности живой природы. Без биологических процессов, осуществляемых на этих уровнях, невозможны эволюция и существование жизни на Земле. На определенном этапе эволюционного развития появился человек. В его жизни главную роль играют социальные взаимоотношения. Но человек и все человечество - это составная часть биосферы, его здоровье зависит от умения приспосабливаться к меняющимся условиям среды. Если эта способность проявляется недостаточно, то могут возникнуть заболевания, затрагивающие различные уровни организации жизни (клеточный, онтогенетический). 23


Формы существования живой материи Все живые организмы, обитающие на Земле, разделены на две группы. К первой относят вирусы и фаги, не имеющие клеточного строения. Ко второй - все остальные организмы, для которых разнообразные клетки являются основной структурной единицей. 24



Формы существования живой материи Сложные вирусы имеют наружную оболочку, называемую суперкапсидом. Она построена из плазматической мембраны клетки-хозяина. К сложным вирусам относят вирусы герпеса (1), гриппа, СПИДа и др. Вирусы отличаются друг от друга формой капсида и строением оболочки. 26




Клеточные формы Большинство живых организмов, обитающих на Земле, имеют клеточное строение. В процессе эволюции органического мира клетка оказалась единственной элементарной системой, в которой возможно проявление всех закономерностей, характеризующих жизнь. Учитывая особенности строения клеток, все живые организмы делят на прокариоты и эукариоты. 29


Прокариотические клетки. Это организмы с неоформленным ядром, представленные бактериями и сине- зелеными водорослями. Большинство из них имеют малые размеры (до 10 мкм) И округлую, овальную или удлиненную формы клеток. Генетический материал (ДНК) единственной кольцевой хромосомы находится в цитоплазме и не отделен от нее оболочкой. Этот аналог ядра называют нуклеоидом. 30


Эукариотические клетки. Клетка - это основная структурная, функциональная и генетическая единица организации живого, элементарная живая система. Клетка может существовать как отдельный организм (бактерии, простейшие, некоторые водоросли и грибы) или в составе тканей многоклеточных животных, растений, грибов. 31

1.Химический состав. Живые существа состоят из тех же химических элементов, что и неживые, но в организмах есть молекулы веществ, характерных только для живого (нуклеиновые кислоты, белки, липиды).

2.Дискретность и целостность. Любая биологическая система (клетка, организм, вид и т.д.) состоит из отдельных частей, т.е. дискретна. Взаимодействие этих частей образует целостную систему (например, в состав организма входят отдельные органы, связанные структурно и функционально в единое целое).

3.Структурная организация. Живые системы способны создавать порядок из хаотичного движения молекул, образуя определенные структуры. Для живого характерна упорядоченность в пространстве и времени. Это комплекс сложных саморегулирующихся процессов обмена веществ, протекающих в строго определенном порядке, направленном на поддержание постоянства внутренней среды - гомеостаза.

4.Обмен веществ и энергии . Живые организмы - открытые системы, совершающие постоянный обмен веществом и энергией с окружающей средой. При изменении условий среды происходит саморегуляция жизненных процессов по принципу обратной связи, направленная на восстановление постоянства внутренней среды - гомеостаза. Например, продукты жизнедеятельности могут оказывать сильное и строго специфическое тормозящее воздействие на те ферменты, которые составили начальное звено в длинной цепи реакций.

5.Самовоспроизведение. Самообновление. Время существования любой биологической системы ограничено. Для поддержания жизни происходит процесс самовоспроизведения, связанный с образованием новых молекул и структур, несущих генетическую информацию, находящуюся в молекулах ДНК.

6.Наследственность. Молекула ДНК способна хранить, передавать наследственную информацию, благодаря матричному принципу репликации, обеспечивая материальную преемственность между поколениями.

7.Изменчивость. При передаче наследственной информации иногда возникают различные отклонения, приводящие к изменению признаков и свойств у потомков. Если эти изменения благоприятствуют жизни, они могут закрепиться отбором.

8.Рост и развитие. Организмы наследуют определенную генетическую информацию о возможности развития тех или иных признаков. Реализация информации происходит во время индивидуального развития - онтогенеза. Наопределенном этапе онтогенеза осуществляется рост организма, связанный с репродукцией молекул, клеток и других биологических структур. Рост сопровождается развитием.

9. Раздражимость и движение. Все живое избирательно реагирует на внешние воздействия специфическими реакциями благодаря свойству раздражимости. Организмы отвечают на воздействие движением. Проявление формы движения зависит от структуры организма.


3. Проявления жизни на нашей планете чрезвычайно многообразны. В связи с этим выделяют различные уровни организации живой материи, которые отражают соподчиненность, иерархичность структурной организации жизни. В основе представлений об уровнях организации лежит принцип дискретности.

Молекулярный уровень. Элементарными единицами этого уровня организации жизни являются химические вещества: нуклеиновые кислоты, белки, углеводы, липиды и др. На этом уровне в основном проявляются такие важнейшие процыццессы жизнедеятельности, как передача наследственной информации, биосинтез, превращение энергии и др. Основная стратегия жизни на молекулярном уровне - способность создавать живое вещество и кодировать информацию, приобретенную в меняющихся условиях среды.

На клеточном уровне организации структурными элементами выступают различные органеллы. Способность к воспроизведению себе подобных, включение различных химических элементов Земли в состав клетки, регуляция химических реакций, запасание и потребление энергии - основные процессы этого уровня. Стратегия жизни на клеточном уровне - вовлечение химических элементов Земли и энергии Солнца в живые системы.

Организменный уровень организации присущ одноклеточным и многоклеточным биосистемам (растениям, грибам, животным, в том числе человеку и разнообразным микроорганизмам). У живых организмов проявляются такие свойства, как питание, дыхание, выделение, раздражимость, рост и развитие, размножение, поведение, продолжительность жизни, взаимоотношения с окружающей средой. Все перечисленные процессы в совокупности характеризуют организм как целостную саморегулирующуюся биосистему. Основная стратегия жизни на этом уровне - ориентация организма (особи) на выживание в постоянно меняющихся условиях среды.

Популяционно-видовой уровень организации характеризуется объединением родственных особей в популяции, а популяций - в виды, что приводит к возникновению новых свойств системы. Основные свойства этого уровня: рождаемость, смертность, выживание, структура (половая, возрастная, экологическая), плотность, численность, функционирование в природе. Основная стратегия популяционно-видового уровня проявляется в более полном использовании возможностей среды обитания, в стремлении к возможно более длительному существованию, в сохранении свойств вида и самостоятельном развитии.

На биогеоценотическом (экосистемном) уровне организации основными структурными элементами являются популяции разных видов. Данный уровень характеризуется множеством свойств. К ним относятся: структура экосистемы, видовой и количественный состав ее населения, типы биотических связей, пищевые цепи и сети, трофические уровни, продуктивность, энергетика, устойчивость и др. Организующие свойства проявляются в круговороте веществ и потоке энергии, саморегулировании и устойчивости, автономности, открытости системы, сезонных изменениях. Основная стратегия этого уровня - активное использование всего многообразия окружающей среды и создание благоприятных условий развития и процветания жизни во всем ее многообразии.

Самым высоким уровнем организации жизни является биосферный . Основными структурными единицами этого уровня являются биогеоценозы (экосистемы) и окружающая их среда, т.е. географическая оболочка Земли (атмосфера, гидросфера, почва, солнечная радиация и др.) и антропогенное воздействие. Для этого уровня орган и организации характерны: активное взаимодействие живого и неживого вещества планеты; биологический круговорот веществ и потоки энергии с входящими в него геохимическими циклами; хозяйственная и этнокультурная деятельность человека. Основная стратегия жизни на биосферном уровне - стремление обеспечить динамичную устойчивость биосферы как самой большой экосистемы нашей планеты.

клеточный ; биология клетки (цитология) - один из осн. разделов совр.биологии, включает проблемы морфологич. организаций клетки, специализации клеток в ходе развития,функций клеточной мембраны, механизмов и регуляции деления клетки. Эти проблемы имеют особенноважное значение для медицины, в частности, составляя основу проблемы рака.

На организменном уровне изучают особь и свойственные ей как целому чертыстроения, физиол. процессы, в т. ч. дифференцировку, механизмы адаптации (акклимации) и поведения, вчастности - нейрогумоарльные механизмы регуляции, функции ЦНС. На органотканевом уровне осн.проблемы заключаются в изучении особенностей строения и функций отд. органов и составляющих ихтканей

Похожие статьи

© 2024 my-kross.ru. Кошки и собаки. Маленькие животные. Здоровье. Лекарство.